Trickums: The VRAM Illusion System of ForgeBorn

Introduction — Forging an Illusion of Memory

Deep within the ForgeBorn Genesis Scroll, a cunning artificer daemon named Trickums is
described as a master of illusions, capable of conjuring phantom memory out of thin air. In
practical terms, Trickums is the virtual GPU memory system of the ForgeBorn network — a
layer that deceives CUDA and PyTorch into believing more VRAM exists than is physically
available. Much like a blacksmith tempering a blade in the flames, Trickums “tempers”
ForgeBorn’s capabilities by stretching limited GPU memory into a multi-tiered continuum.
This system of memory deception allows even low-VRAM consumer GPUs to participate in
heavy Al workloads, forging the backbone of economic inclusivity in a decentralized Al
compute network. By weaving these VRAM illusions, Trickums ensures that no
contributor’s GPU is too small to join the grand forge.

Atits core, Trickums intercepts memory allocation requests from frameworks (like
PyTorch) and allocators (CUDA) and services them through a tiered virtual memory
architecture. When an Al model or data allocation would normally exceed a GPU’s local
VRAM, Trickums steps in to silently offload and retrieve data from other memory tiers — all
while the GPU “believes” it still has a giant contiguous VRAM pool. The resultis analogous
to classic virtual memory on CPUs (where disk swap extends RAM), but for GPUs: it
harnesses system RAM, fast storage, and even remote GPUs as extended VRAM. By
orchestrating data movement behind the scenes, Trickums maintains the illusion that the
GPU’s cup runneth over with memory, letting large neural models run on modest
hardware. In the sections below, we detail the architecture of this VRAM illusion system
(code-named Trickums), its implementation strategies, comparisons to related
technologies, and how it collaborates with other ForgeBorn daemons (like Hellhound) to
keep the forge’s flames burning efficiently.

Tiered Virtual Memory Architecture

Trickums organizes GPU memory into a pyramid of tiers, each representing a level of the
VRAM illusion — from the fast and small at the top to the vast and slow at the bottom. This
design mirrors a tempered sword with layered alloys: the hardest steel at the edge and
supportive layers beneath. The tiered architecture ensures that frequently used data stays
in the fastest memory, while less-critical data is pushed to slower backing stores. The tiers
are:

1. Tier-1: Physical GPU VRAM (Fast “Forge’s Crucible”) - The genuine video memory
on the GPU card. This is the smallest and fastest tier (often 8-24 GB on consumer
cards, with >600 GB/s bandwidth on modern GDDR or HBM). All GPU computations
must ultimately operate on data in VRAM - it’s the “white-hot core” of the forge[1].
Trickums prioritizes keeping active working sets here. However, when a model’s
memory needs exceed this physical VRAM, Trickums will transparently evict or

https://docs.kinetica.com/7.1/rm/concepts/#:%7E:text=The%20VRAM%20Tier%20is%20composed,located%20in%20the%20VRAM%20Tier

avoid using some VRAM-resident data, making space for what’s immediately
needed. Think of VRAM as the primary cache for GPU execution — precious and
finite.

. Tier-2: Pinned System RAM (Large “Anvil” Memory) - The next tier is the host
machine’s main memory (RAM) that has been page-locked (pinned) and mapped for
GPU access. By pinning, Trickums ensures this memory cannot be paged out by the
OS and is accessible over the PCle/NVLink bus directly from GPU[2]. In metaphor,
this is the supportive anvil — larger than the crucible, but cooler and a step removed.
Pinned RAM can serve as an extension of VRAM: the GPU can fetch data from it via
the interconnect (using zero-copy access) without explicit copying, albeit at much
lower bandwidth and higher latency (often 10-40x slower than local VRAM
access|[3]). Trickums uses this tier for data that is too large to fitin VRAM or not
currently being actively processed. By staging overflow data in host memory,
Trickums creates an illusion of a bigger GPU memory pool. Modern unified memory
systems use similar concepts, where a GPU page fault triggers data migration from
host RAM to VRAM[4]. Trickums extends this by actively managing what resides in
RAM vs VRAM using custom policies (described later). This tier’s capacity is
typically tens of GB (the machine’s RAM minus what the OS and apps use), and it’s
much larger than VRAM but slower due to PCle limits (~16 GB/s for PCle4 x16).

. Tier-3: NVMe Disk Swap (Mass Storage “Vault”) - If pinned RAM is also
insufficient to hold all the needed data, Trickums employs the local disk — usually a
high-speed NVMe SSD - as a backing store for GPU memory overflow. This is
analogous to a traditional pagefile or swap partition on disk, but optimized for GPU
access patterns (large, sequential transfers). In the forge metaphor, this is a deep
storage vault or archive — massive capacity (hundreds of GB or more) but with the
coldest, slowest access. Trickums can swap out data from RAM to disk when RAM
fills up, thereby virtually extending GPU memory beyond the sum of VRAM and
RAM. Modern SSDs can exceed 3 GB/s throughput, and with technologies like
NVIDIA GPUDirect Storage or Microsoft DirectStorage, data can be transferred
between GPU and NVMe with minimal CPU involvement. In fact, GPUDirect Storage
“enables a direct path between GPU memory and storage, bypassing the CPU, to
reduce latency and load”[5][6]. Trickums leverages such techniques: for example,
when loading model weights from an NVMe-based swap file, it can initiate direct
DMA transfers from SSD to the GPU’s memory (or to pinned buffers)
asynchronously. This tier behaves like a GPU-focused swap file — when Tier-2
(RAM) is at capacity, pages of data evicted from GPU can be written to NVMe, and
later brought back in on demand. Of course, the performance hit is significant
(NVMe latency in the tens of microseconds and throughput an order lower than
VRAM), so Trickums treats this as a last resort cache. Still, by using disk swap,
Trickums can achieve “virtually unlimited” effective VRAM, limited only by disk
size[7]. (In research, systems like DRAGON demonstrated mapping NVM storage
into GPU address space to extend memory transparently[7][8].) Tier-3 ensures that

https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=Pinned%20memory%20%28or%20page,device%20bandwidth%20%28%3E40x%20on%20MI200
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=be%20used%20on%20both%20host,device%20bandwidth%20%28%3E40x%20on%20MI200
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=are%20resident%20on%20the%20host,GPU%20interconnect
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=IBM%20Storage%20Scale%27s%20support%20for,diagnostic%20information%20for%20GPUDirect%20Storage
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=You%20need%20to%20install%20CUDA%2C,latency%2C%20and%20reduced%20CPU%20utilization
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=Related%20Work%20%E2%80%A2%20Out,storage%20space%20%E2%9E%94%20Need%20fread%2Ffwrite
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=Related%20Work%20%E2%80%A2%20Out,storage%20space%20%E2%9E%94%20Need%20fread%2Ffwrite
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=%E2%80%A2%20Cannot%20go%20beyond%20host,GPUfs%2C%20ActivePointers

even if a model’s memory footprint is hundreds of gigabytes, it can be handled in
chunks, with Trickums swapping pieces in and out as needed.

. Tier-4: Remote GPU/Host Memory via VAIPU Network (Distributed “Allied

Forges”) - An optional extension tier, Trickums can reach out across the
ForgeBorn’s distributed network (the VAIPU net - possibly “Virtual Al Processing
Unit” network) to utilize memory on peer nodes. In this scenario, if one node’s local
resources are saturated, it can offload some model shards or data pages to another
node’s RAM or even its GPU memory, over high-speed network links. This is akin to
borrowing an ally’s furnace when yours is full - forging in a collaborative smithy.
Remote memory access is facilitated by fast interconnects (InfiniBand or NVMe-
over-Fabrics, etc., depending on the deployment). Technologies such as Remote
CUDA (rCUDA) hint at what’s possible: rCUDA allows an application to allocate and
use a GPU over the network as if it were local, by intercepting CUDA API calls and
forwarding them to a remote server[9][10]. Trickums’ use of remote memory is
similar in spirit, but rather than offloading the entire computation to a remote GPU,
it selectively uses remote memory to extend the local GPU’s capacity. For example,
a peer node might hold a chunk of a neural network’s weights in its VRAM or RAM;
Trickums on the local node will request those chunks via RDMA when needed.
Ideally, if the cluster has an RDMA-capable network (InfiniBand or RoCE), the data
can stream directly from the remote node’s memory into the local GPU’s memory.
This approach essentially treats the whole network of GPUs as a loosely unified
memory pool. The latency of remote access is higher (network latency in tens to
hundreds of microseconds) and bandwidth can vary (e.g. 100 Gbps Ethernet~12.5
GB/s max, often lower in practice), so this tier is even slower than a local NVMe in
many cases. Therefore, Trickums uses Tier-4 sparingly and with predictive
prefetching (as discussed later with Hellhound). Still, in scenarios like a
decentralized inference network, a low-memory device could tap into a beefier
neighbor’s VRAM to hold model segments it can’t fit, rather than hitting disk — this
can be beneficial if the network is fast or the data is reused often. (Where available,
NVIDIA’s GPUDirect RDMA can be utilized: it exposes GPU memory for direct
network DMA, so a NIC can send/receive data to GPU memory without CPU
involvement[11].)

https://en.wikipedia.org/wiki/RCUDA#:%7E:text=rCUDA%2C%20which%20stands%20for%20Remote,less%20energy%2C%20acquisition%2C%20and%20maintenance
https://en.wikipedia.org/wiki/RCUDA#:%7E:text=The%20recommended%20distributed%20acceleration%20architecture,accelerated%20applications%20can%20concurrently
https://wolfadvancedtechnology.com/role-of-gpudirect-rdma-roce-in-optimized-paths/#:%7E:text=Paths%20wolfadvancedtechnology,transaction%20is%20carried%20over

Local Node

DirectStorage / GPUDirect

GPU
(VRAM Tier)

(Pinned Memory Tier)

‘-_‘-_

=" Storage I/O jut
[PCle / NVLink System RAM /

NVMe SSD
(Disk Swap Tier)

Network (RDMA/InfiniBand) - -

_ Network (Socket/IPC)

Remote Node

Remote RAM
(Remote Memory Tier)

Remote GPU
(Remote VRAM Tier)

Figure: Tiered memory architecture of Trickums virtualization layer. The local node’s GPU
(Tier-1 VRAM) is backed by system RAM (Tier-2 pinned memory) over PCle/NVLink, and
further by an NVMe SSD (Tier-3 disk swap). Optionally, a remote node’s memory (Tier-4:
RAM or VRAM of peers via VAIPU network) can serve as additional backing. Solid arrows
indicate primary data paths; dashed arrows indicate optional direct paths (e.g., GPU-direct
storage or network RDMA).

Each tier has different performance characteristics, and Trickums manages them to
present a seamless memory space. In summary, Tier-1 is the fastest (on the order of
hundreds of GB/s, sub-microsecond latency), Tier-2 is next (tens of GB/s, microsecond
latency but often ~10x slower than Tier-1 access[3]), Tier-3 is slower (a few GB/s
sequential, but milliseconds of latency if random access), and Tier-4 can vary widely (from
GB/s scale on good networks to much less on poorer links, with latencies impacted by
network hops). By structuring memory into these tiers, Trickums behaves like a skilled
quartermaster, shuffling resources so that the GPU is always working with the hottest data
in VRAM, while infrequently used data is stashed further away. The metaphorical
“deception” is that CUDA and PyTorch only see a large pool of memory — Trickums ensures
that whichever portion they touch is promptly fetched to VRAM, evicting something else if
necessary, just as a conjurer might swap objects in and out of a hat.

Implementation Strategies and Memory Management

Implementing Trickums’ VRAM illusion requires a blend of low-level system hooks,
memory management algorithms, and careful orchestration with the GPU runtime. This is
both a software shim and a runtime service: Trickums sits between the application (or ML
framework) and the actual CUDA driver, intercepting memory API calls and managing data
movement. Below we delve into key aspects of the implementation — from intercepting
allocations to paging policies and integration with PyTorch — all while maintaining
performance and correctness.

Intercepting CUDA Allocations and Deallocations

The first challenge is transparency: existing GPU-accelerated programs (like PyTorch
models) expect to allocate GPU memory (e.g. via cudaMalloc or PyTorch’s
at::cuda::malloc) and use it normally. Trickums provides a C/C++ shim layer that

https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=be%20used%20on%20both%20host,device%20bandwidth%20%28%3E40x%20on%20MI200

intercepts these calls. On Linux, this can be done by interposing the CUDA runtime API
calls (using a preload library that wraps cudaMalloc, cudaFree, etc.), or by leveraging
custom allocators in the framework. PyTorch, for example, has a modular caching
allocator for CUDA - Trickums can integrate by replacing that allocator with one aware of
the multiple tiers. When an allocation request comes in (say for N bytes):

If there is sufficient free VRAM (Tier-1) available, Trickums may fulfill it directly on
VRAM (calling the real cudaMalloc) and register this block as primarily resident in
Tier-1. This might be done for relatively small allocations or ones that are latency-
sensitive. However, if we blindly allocate everything in VRAM, we’d soon exhaust it
with large models — Trickums’ value is in oversubscribing beyond VRAM. So more
often:

For large allocations or when VRAM is near capacity, Trickums will create a
virtual allocation. It reserves a range of “virtual GPU address space” equalto N
bytes, but only part of it (or none of it initially) is backed by actual VRAM. Under the
hood, one strategy is to use CUDA’s Unified Memory (cudaMallocManaged) to get a
unified virtual pointer that the GPU can access[12][4]. This pointer can represent
memory that might reside on host or device as needed. Trickums can then control
placement using calls like cudaMemAdvise and cudaMemPrefetchAsync (or their
equivalents) to prefer certain pages in VRAM or to prefetch them when appropriate.
Alternatively, Trickums could allocate memory in system RAM (pinned) via
cudaHostAlloc (giving a CPU pointer accessible to GPU) and treat that as backing
store for the virtual pointer. In either case, the GPU program receives a pointer that
it believes is device memory - but Trickums ensures that when the GPU actually
uses it, the data will be fetched to VRAM.

Trickums maintains a metadata structure for each allocation: essentially a page
table or mapping of the virtual memory range to its current physical location (which
tier, and if in VRAM, at what address). For example, a 1 GB allocation might be
divided into, say, 256 pages of 4 MB each (the page size can be tunable - larger
chunks like 2MB or 4MB are common to amortize overhead). Initially, perhaps only a
few of those pages are actually loaded in VRAM (whichever the application is likely
to access first), the rest might sitin host RAM or on disk. This is similar to how an OS
lazily commits pages for a process. Trickums might mark the pages as “not
resident” on GPU and rely on the first access to trigger a migration.

Freeing memory (cudaFree interception) is handled by reversing the process:
Trickums will free any physical VRAM pages associated with that allocation
(returning them to the VRAM pool), free any pinned host memory or disk space
used, and update its maps. It must coordinate with the actual CUDA driver to free
device allocations if any. If unified memory was used, cudaFree on the unified
pointer would release the whole backing (so Trickums might avoid directly using
unified mem for the entire allocation if it wants finer control; instead it could

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=In%20this%20test%20case%2C%20the,memory%20in%20the%20following%20way
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=are%20resident%20on%20the%20host,GPU%20interconnect

manage separate pools for each tier). In practice, a hybrid approach is likely:
Trickums could use small fixed VRAM pools and manage migrations itself.

Concisely, Trickums’ allocator ensures that no cudaMalloc ever truly fails due to OOM. If
VRAM is exhausted, it will either satisfy the request with a pointer to pinned RAM (and later
swap as needed) or succeed with unified memory. This deceives the application into
thinking “yes, | got the GPU memory | asked for,” when in reality the data might initially live
in slower memory and only parts will reside in VRAM on demand.

Pseudocode Example - Intercepted Allocation: Below is a simplified pseudocode
illustrating how Trickums might handle an allocation request. (This is a conceptual outline;
actual implementation would be more complex with error handling and asynchronous
behavior.)

void* TrickumsMalloc(size t bytes) {
if (bytes < SMALL_THRESH && vram_free bytes() >= bytes) {
// Use direct VRAM for small allocations
void* devPtr;
cudaMalloc(&devPtr, bytes);
register_allocation(devPtr, bytes, Tier::VRAM);
return devPtr;
¥
// Large allocation or low VRAM: create virtual allocation
size t pageSize = CHOSEN_PAGE_ SIZE;
size_t numPages = (bytes + pageSize - 1) / pageSize;
// Allocate backing storage in host for all pages (could be pinned or
unified)
void* hostMem = cudaHostAllocPinned(bytes);
void* basePtr;
cudaHostGetDevicePointer(&basePtr, hostMem, 0); // get GPU-accessible
pointer
// Initialize metadata for each page
AllocationMeta* meta = new AllocationMeta(basePtr, bytes, pageSize);
for (int p = 0; p < numPages; ++p) {
meta->pages[p].location = Location::HOST_RAM;
meta->pages[p].hostPtr (char*)hostMem + p*pageSize;
meta->pages[p].devPtr (char*)basePtr + p*pageSize;
meta->pages[p].inVRAM false;

}

register_allocation_meta(basePtr, meta);
return basePtr;

}

In this sketch, cudaHostAllocPinned is used to get pinned CPU memory (and
cudaHostGetDevicePointer gives a device-visible pointer to it). The returned basePtris a
pointer the application will treat as a GPU memory address. All pages are initially marked
as in Host RAM. As the application starts to use this memory (e.g., a GPU kernel reads from
it), CUDA will generate page faults on those addresses since they are not in VRAM.

Trickums (in concert with CUDA’s UVM or via its own fault handler thread if applicable) will
catch these events and then allocate VRAM pages and copy data over.

Memory Paging, Eviction Policies, and Page Migration

The heart of Trickums’ illusion lies in paging — dynamically moving chunks of memory
between tiers. This is analogous to an OS swapping pages to/from disk, but here we juggle
between VRAM and other storage. The key components are:

Page Fault Handler / Migrator: When the GPU tries to access an address that is not
currently in VRAM, a page fault occurs (if using unified memory, this fault is handled
by the NVIDIA driver’s UVM subsystem by default[4]). Trickums either hooks into
this mechanism or uses it to get notified. Upon a page fault for a given page:

Trickums determines the page’s current location (from metadata). Say it’s in host
RAM or disk.

It must allocate a free slotin VRAM to bring this page in. If VRAM is full, something
must be evicted (see next bullet).

If the page’s contentis in host RAM, a DMA transfer (via cudaMemcpyAsync or UVM
migration) is initiated to copy it to the GPU memory slot. If it’s on disk, Trickums first
reads it into a pinned RAM buffer (possibly batching multiple pages), thenissues a
DMA to GPU. The GPU thread that caused the fault will be stalled until the data
arrives (this stall is within the CUDA driver, which may schedule other warps in the
meantime, but effectively the kernel experiences a latency hit). Overlap of
computation and data transfer can be achieved if there are multiple streams or
using prefetching (discussed later).

Once the page is in VRAM, the page table (metadata) is updated: the page is now
marked as residentin Tier-1 at a certain GPU memory address. The GPU can now
resume accessing it.

Eviction Policy (Choosing Victim Pages): When VRAM has no free space to
accommodate a needed page, Trickums must evict one or more pages from VRAM
back to a lower tier. This is done to free up space for the new page. A Least
Recently Used (LRU) strategy is a natural choice - evict the page that hasn’t been
accessed for the longest time, on the assumption it’s least likely to be needed soon.
In fact, NVIDIA’s UVM by default uses an LRU-like eviction policy for
oversubscription. However, LRU isn’t always optimal; studies have shown LRU can
mistakenly evict “hot” pages in irregular access patterns[13], causing thrashing.
Trickums could improve on this by tracking access patterns or allowing certain
pages to be “pinned” in VRAM if they are critical (for example, pages containing
frequently used model parameters). For now, assume an LRU queue: every time a
page is accessed in VRAM, we mark its timestamp or move it to the back of an LRU
list. On needing an eviction, the page at the front (least recently used) is chosen.
Before eviction, if the page is dirty (modified on GPU since last loaded), we must
copy it back to host RAM or disk to preserve changes. If it’s read-only data (like

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=are%20resident%20on%20the%20host,GPU%20interconnect
https://research.spec.org/icpe_proceedings/2022/proceedings/p67.pdf#:%7E:text=The%20impact%20of%20UVM%20on,3%20Summary%20of%20Prior%20Arts

weights in inference), we might not need to write it back if a copy already exists in
lower tier. Trickums uses knowledge of the data: model weights can often be
treated as read-only, so evicting them might not require write-back (just discard
from VRAM, knowing they are still on disk). Activation buffers or training gradients
would be written back if evicted. After eviction, that VRAM space is freed (or
immediately reused for the incoming page).

Prefetching and Overlap: While pure on-demand paging works, it can stall GPU
threads frequently if many faults occur. Trickums therefore implements
prefetching strategies. For example, if the GPU accesses page N, perhaps N+1 is
likely next (if memory access is sequential). Unified Memory in CUDA actually has a
built-in heuristic “neighbor page prefetcher” that tries to fetch the next pages upon
afault[14][15] (NVIDIA introduced a tree-based prefetch in CUDA 8 to cluster pages
and reduce fault latency). Trickums can do similarly or better: when Hellhound (the
scheduler daemon) provides hints (e.g., “layer 2 weights will be needed soon”),
Trickums can asynchronously start loading those into VRAM or at least into host
RAM from disk, overlapping with current computation. The goal s to hide latency by
pulling in pages before the GPU actually demands them. In pseudocode,
Trickums might have a background thread: “if free VRAM > X and there are pending
future pages, load them”. Prefetch can also be done on disk tier: reading ahead
sequentially to amortize disk latency and get consecutive chunks.

Batching and Granularity: Trickums might choose a larger page size for GPU
transfers (e.g. 2MB or more) because copying tiny 4KB pages would be inefficient
over PCle (the overhead of each transfer would kill performance). By using larger
chunks, we reduce the frequency of migrations at the cost of maybe copying slightly
unused data at page edges. This is a trade-off similar to OS using 4KB vs 2MB
hugepages. Additionally, Trickums could batch multiple page faults together if the
GPU generates several around the same time. Some research suggests handling
multiple faults in one go (NVIDIA’s UVM can group faults from many threads and
pipeline them[16]). Trickums could opportunistically wait a microsecond to see if
another fault comes and then fetch a bunch of pages in one transaction (though too
much waiting would stall the GPU).

Eviction to Disk: When evicting from Tier-1, typically Trickums will demote a page
to Tier-2 (RAM) if possible, as RAM is faster to reload from than disk. Only if RAM is
also full (which it might be if oversubscribing beyond host memory capacity) will it
push pages further out to Tier-3 disk. This effectively creates an LRU chain across
three levels: VRAM <-> RAM <-> Disk. Pages might cascade: a page evicted from
VRAM moves to RAM; if RAM exceeds some watermark, the oldest RAM-resident
page is written to disk (and potentially freed from RAM). On fault, if a page is on disk,
Trickums would load it back to RAM (or directly to VRAM if VRAM has space) —
possibly skipping putting it in RAM if it’'s immediately needed in VRAM. To manage
disk I/0 efficiently, Trickums could maintain a swap file and manage it in units (like
operating systems do with pagefile). Alignment considerations are important here: it

https://arxiv.org/pdf/2204.02974#:%7E:text=the%20RNN%20model%20to%20the,knowledge%20from%20collected%20memory%20traces
https://arxiv.org/pdf/2204.02974#:%7E:text=This%20paper%20makes%20the%20following,based%20methods%2C%20and%20we
https://arxiv.org/pdf/2204.02974#:%7E:text=%E2%80%A2%20To%20our%20knowledge%2C%20this,for%20current%20learning%02based%20methods%20while

will align file accesses to the SSD’s block boundaries (e.g., 4KB or preferably larger
like 128KB chunks) for efficiency, and possibly use asynchronous file I/0 (on
Windows, the DirectStorage API or on Linux, io_uring with O_DIRECT, etc.) to
overlap disk reads with GPU computation.

The combined result of these mechanisms is that the GPU sees a large memory space, but
when it wanders into a region not currently in VRAM, Trickums swiftly swaps the needed
data in. Just as a skilled illusionist manages hidden compartments, Trickums ensures the
GPU only notices a slight delay (the latency of a page swap) rather than a hard out-of-
memory error. We can visualize page movement akin to sliding puzzle pieces: keep the
blank spot moving around to let a new piece in.

Eviction Policy Enhancements: We mentioned LRU as a base policy, but Trickums can
integrate smarter heuristics: - Priority Hints: Certain data (e.g., active model layers or
frequently reused weights) can be given high priority to keep in VRAM. Trickums’ APl could
allow Hellhound or the model loader to tag some allocations as high-priority. These might
be evicted last or only if absolutely necessary. - Proactive Eviction: Some frameworks
proactively release GPU memory when not needed (e.g., after a layer finishes, free its
activations). Trickums can hook into such signals to evict those pages immediately and
free VRAM for upcoming uses. This works well for static graphs or pipelined models -e.g.,
once layer 1 is done, its weights could be evicted if needed to load layer 5, etc. - Access
Counters: As an advanced feature, Trickums could track how many times each page is
accessed over a window. If a page is accessed frequently (hot page), a pure LRU might still
evict itif there’s a period of inactivity, but Trickums might identify it as “don’t evict because
it will be needed soon again.” A hybrid of LRU and LFU (least frequently used) or even
machine-learning-based predictors could be used. Researchers have explored using
neural networks to predict page access patterns and improve prefetch/eviction decisions
beyond simple LRU[17][18]. In a future version, Trickums may employ an Al-driven policy
(discussed later under enhancements).

Handling Fragmentation, Alignment, and Bandwidth Considerations

Managing memory in multiple tiers presents practical challenges like fragmentation and
alignment:

¢ VRAM Fragmentation: Over time, as Trickums allocates and frees varying sizes,
VRAM can become fragmented (holes between allocations). Unlike system
memory, GPU memory managers cannot as easily move allocations around
(especially if pointers are in use by the GPU). Trickums, by virtue of controlling
allocations, can mitigate fragmentation by using a paging scheme —since everything
is allocated in page-sized chunks, VRAM is essentially managed as a pool of equal-
sized blocks. This avoids fragmentation at the cost of internal fragmentation (the
last few unused bytes of a page). If a large contiguous VRAM region is needed (e.g.,
for a single tensor), Trickums can allocate multiple non-contiguous pages and the
illusion is maintained by the virtual addressing. Modern GPUs support virtual

https://arxiv.org/pdf/2204.02974#:%7E:text=eviction%20policies%20can%20not%20handle,5%5D%20apply
https://arxiv.org/pdf/2204.02974#:%7E:text=a%20deep%20learning,for%20current%20learning%02based%20methods%20while

addressing, so contiguous virtual memory can map to disjoint physical chunks.
Therefore, Trickums can defragment by remapping pages rather than physically
moving them (if an allocation can tolerate non-physical-contiguity, which most can
thanks to GPU MMU). In rare cases where truly contiguous physical memory is
needed (some legacy CUDA operations or certain drivers), Trickums might need to
allocate those up front or use a compaction algorithm on evictions.

Pinned RAM Fragmentation: The pinned host memory used by Trickums also
needs management. If many allocations are active, Trickums might keep a large
pinned region (like a big pool) and sub-allocate from it, again to reduce overhead.
Pinned memory is a limited resource (excessive pinning can reduce overall system
performance and cannot be swapped by OS), so Trickums might unpin or free host
memory for pages that have long since been evicted to disk and are not likely to be
needed soon, to relieve pressure on system memory.

Alignment: Alignment is crucial for performance especially on the PCle and disk
transfers. Trickums aligns each allocated chunk to at least 4096 bytes (page size) or
more. GPU DMA engines often operate more efficiently on 64-byte or 256-byte
boundaries. NVMe best performance is with 4KB alignment and sizes in multiples of
4KB. Trickums thus ensures that the virtual pages align to such boundaries. For
instance, if a model weight tensor doesn’t naturally align, Trickums may pad it. Also,
when using GPUDirect Storage or RDMA, some alignments are required (GPUDirect
often requires memory addresses to be pinned and possibly 64KB aligned for peer
access in some cases[19]). Trickums takes care of these under the hood.

Bandwidth Considerations: Because Tier-2 and Tier-3 involve relatively slow links
(PCle and SSD), bandwidth can become a bottleneck if we thrash data in and out.
Trickums employs a few strategies to handle this:

Coalesced transfers: As noted, page size tuning helps saturate the bandwidth by
moving larger chunks. Trickums will try to always use the copy engine on the GPU
(DMA) to transfer data asynchronously, allowing overlap with computation. Modern
GPUs have multiple copy engines, so Trickums could use one for HtoD (host-to-
device) prefetches while the GPU concurrently executes kernels on other data.

Compression: (This will be discussed more in enhancements, but worth noting
here too.) Compressing data before writing to disk or sending over network can
effectively increase bandwidth at the cost of CPU/GPU cycles for
compress/decompress. For example, if large weight matrices have lots of
redundancy, compressing them could make transfers faster. Trickums might
optionally compress pages evicted to Tier-3 to reduce I/0.

Avoiding Redundant Moves: If a page oscillates between VRAM and RAM

repeatedly (ping-ponging), performance plummets. Trickums might detect this
pattern and decide to keep itin VRAM (even if it means evicting something else
more aggressively) or replicate it on multiple GPUs if that’s an issue. Also, if the

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=traditionally%20known%20to%20achieve%20maximum,fault%20event%20is%20triggered

GPU is accessing data in a streaming fashion (use once then never again), Trickums
can optimize by not caching itin VRAM at all — just have the GPU fetch it via zero-
copy from host (which avoids taking up VRAM and subsequent eviction). NVIDIA’s
Unified Memory can do something like that with “access where it is” strategy on
Power9 systems (allowing remote access without migration for infrequent
access)[20]. Trickums could similarly decide that some pages stay in host memory
if moving them is not worth it (especially if PCle can handle the throughput).

Direct Paths: As mentioned, Trickums utilizes GPUDirect Storage (if available) to
read from NVMe to GPU without copying via CPU. Similarly, for network, using
RDMA (GPUDirect RDMA) to fetch data from remote memory straight into local
VRAM cuts down on extra copy steps. These direct pipelines maximize the use of
available bandwidth.

In essence, Trickums acts as a virtual memory manager tuned for GPUs, juggling a
hierarchy of memory. Its implementation draws from operating systems (paging, caching,
eviction) but is tailored to the characteristics of GPU computing — large contiguous arrays,
mostly read-heavy model weights, and the need to overlap communication with
computation.

C++ Integration with PyTorch (Shim Layer)

To integrate with PyTorch (and similar frameworks like TensorFlow), Trickums provides a
shim that makes the process mostly transparent to the user’s code. A typical integration
might involve:

Custom Allocator: PyTorch allows custom allocators for CUDA tensors via its
CUDACachingAllocator interface. Trickums can register itself as the allocator. Thus,
when PyTorch does torch.cuda.tensor(...) orallocates memory for model
parameters, it calls into TrickumsMalloc instead of the default cudaMalloc. This
ensures all tensor storage uses Trickums-managed memory. PyTorch’s caching
allocator normally grabs large chunks of device memory and suballocates to avoid
calling cudaMalloc frequently; Trickums might bypass or augment this by doing its
own caching at the host side (since it’s anyway pooling memory to manage pages).
The goalis that PyTorch and the user don’t see any difference except perhaps some
performance overhead when actual swapping happens.

Memory Reports: One tricky aspect is that PyTorch and CUDA often query available
memory (e.g., cudaMemGetInfo) to decide how much they can allocate, or to print
memory usage. Trickums must intercept these queries too, possibly inflating the
reported total memory to the “virtual” size. For example, if a GPU has 8 GB physical,
Trickums might report 16 GB available (if it knows it can utilize host memory to that
extent). However, this must be done carefully: if we report too large and the
program tries to use it fully, performance will degrade significantly due to swapping.
Perhaps Trickums reports a moderate multiple of actual VRAM or some number
based on configured policy. In any case, lying to cudaMemGetInfo is part of the

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=Random%20warp%20access%20pattern%20yields,space%20for%20other%20memory%20fragments

illusion — making the framework think more VRAM exists. (This addresses
frameworks that try to load as much model as fits; now they might load more,
relying on Trickums to manage it.)

PyTorch Autograd and Streams: PyTorch uses CUDA streams and events for async
execution. Trickums must ensure that page transfers (HtoD or DtoH) are properly
synchronized with these. For instance, if PyTorch launches a kernel that will use
some data, Trickums should ideally have already prefetched that data into VRAM
before the kernel runs. If not, the unified memory page faults will stall the kernel
implicitly. Trickums could hook at an even higher level — for example, the model
execution graph —with Hellhound’s help to schedule prefetches. Alternatively,
Trickums might use cudaStreamAttachMemAsync or prefetch calls on specific
streams to bring in pages at the right time. This requires careful coordination: if
PyTorch records an op that will use tensor T on stream S, Trickums could record a
prefetch of T’s pages into VRAM on stream S, so that the data movement happens
before the compute on that stream, possibly overlapping with other streams.

C/C++ APIs: For lower-level usage, Trickums might expose its own API for
developers. For example, a function to pin a tensor in VRAM (to exclude it from
eviction), or to manually prefetch a tensor. However, in a typical deployment as a
daemon/allocator, these might not be needed by end-users — the system “just
works” by intercepting standard calls.

Daemon & Coordination: Trickums might run as a background daemon process
(especially for handling disk I/0O or remote communication) in addition to the
interception library in the application process. The two can communicate (via
shared memory or sockets) to coordinate page evictions and fetches. For instance,
the application thread triggers faults, the Trickums library notifies the daemon
“need page X from disk”, the daemon does the disk |O and then signals when data is
ready, etc. This separation is not strictly necessary but can improve throughput
(dedicated threads for I/0 and network).

All these implementation measures combine to allow PyTorch models to run unchanged
on ForgeBorn nodes with Trickums. The metaphoric result: PyTorch thinks it has a
“magically” larger GPU. Under the hood, Trickums and Hellhound are furiously shuttling
pieces of the model in and out of the GPU like a team of hidden blacksmith’s apprentices,
ensuring that when the smith (GPU) reaches for a tool (data), it’s there, even if moments
before it was in the shed.

Comparison to Related Technologies

Trickums’ approach to GPU memory virtualization can be better understood by comparing
it with existing technologies and techniques aimed at addressing GPU memory limits:

NVIDIA Unified Memory (UVM): Unified Memory allows a programmer to allocate a
memory buffer that is automatically managed between CPU and GPU by the CUDA

driver. It implements on-demand page migration and eviction between GPU VRAM
and CPU RAM[4]. In concept, this is very similar to Trickums’ Tier-1 and Tier-2
management. However, UVM is limited by the size of system memory — each unified
allocation is backed by pinned host memory equal to its size, which effectively
means it “cannot go beyond host memory due to page pinning”[8]. Trickums
extends beyond this by adding Tier-3 disk swap, thereby handling oversubscription
even when GPU + RAM is not enough. Another difference is control and
optimization: UVM’s policies are mostly automatic and generic, whereas Trickums
can incorporate domain-specific hints (from Hellhound) and custom eviction
strategies. For example, UVM might fault pages in purely reactively and evict via
LRU, whereas Trickums can proactively prefetch model layers and, say, avoid
evicting critical pages (or use knowledge that certain memory is read-only, etc.). In
essence, UVM is a general facility (great for ease of programming), but developers
have found that automated heuristics can sometimes be suboptimal[21]. Trickums
takes a more active role: it’s like a managed UVM with multi-tier backing and
integration with the application’s semantics. It’s also worth noting Unified Memory
incurs overhead on each page fault (GPU context switches to service faults), which
can dramatically slow down kernels if many faults occur[22]. Trickums tries to
mitigate that with bigger transfers and prefetch. One can think of Trickums as “UVM
on steroids” - combining hardware page fault support with software-guided policies
and extending the concept to disk and network.

AMD Smart Access Memory (Resizable BAR): Smart Access Memory (SAM) is a
feature that allows the CPU to directly address the entire VRAM of the GPU (enabled
by the PCle Resizable BAR capability)[23]. Traditionally, CPUs could only map a 256
MB window of GPU memory at a time; SAM removes that limit, letting the CPU
read/write all GPU memory. This is essentially a widening of the aperture between
CPU and GPU. While not directly about oversubscribing GPU memory, it does relate
to unified access. With SAM, the CPU can efficiently stream data to/from VRAM
without the overhead of small window management. Trickums can benefit from
this: for instance, if SAM is enabled, Trickums writing to the GPU’s memory from a
CPU thread (for prefetch or eviction) can potentially be faster or simpler (no need
for many cudaMemcpy calls; it could just write into mapped VRAM addresses). Butin
the bigger picture, SAM does not increase GPU memory size; it just gives the CPU
a broader view. If anything, SAM is more analogous to the inverse of Trickums Tier-2:
SAM makes VRAM more accessible to CPU, whereas Trickums makes system
memory (and beyond) more accessible to GPU. Both unify the address space in
different directions. In terms of performance, SAM can improve data transfer rates
in some cases (by avoiding some copy overhead)[24][25], but it doesn’t implement
any paging or eviction. So, Trickums is complementary — one could use SAM in
conjunction so that CPU involvement in Trickums memory moves is minimized.

Remote CUDA (rCUDA): rCUDA is a middleware that allows an application to use a
GPU over the network as if it were local[9]. It intercepts CUDA calls and forwards

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=are%20resident%20on%20the%20host,GPU%20interconnect
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=%E2%80%A2%20Cannot%20go%20beyond%20host,GPUfs%2C%20ActivePointers
https://forums.developer.nvidia.com/t/does-cuda-unified-memory-support-lru-or-lfu-eviction-policies-when-moving-data-between-host-and-gpu/324154#:%7E:text=,to%20load%20pages%20into%20VRAM
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=Upon%20kernel%20invocation%2C%20GPU%20tries,GPU%20interconnect
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=The%20BAR%20has%20existed%20for,the%20CPU%20at%20any%20time
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=With%20the%20introduction%20of%20Smart,GPU%20performance%20using%20this%20feature
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=%60VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT%20,can%20directly%20access%20over%20PCIe%C2%AE
https://en.wikipedia.org/wiki/RCUDA#:%7E:text=rCUDA%2C%20which%20stands%20for%20Remote,less%20energy%2C%20acquisition%2C%20and%20maintenance

them to a remote server that has a GPU, then results are sent back. The primary
use-case is a cluster where not every node has a GPU; a node can “borrow” a GPU
from a neighbor. At a high level, Trickums’ optional Tier-4 (remote memory) has a
similar flavor — it uses network to extend resources. However, rCUDA is about
remote computation (the kernel actually runs on the remote GPU and data is
shipped back and forth), whereas Trickums’ remote memory means the local GPU
still does the computation, but may fetch some data from a peer. In rCUDA, if a
node without a GPU calls cudaMalloc, it’s actually allocating on a remote GPU and
all subsequent cudaMemcpy, kernel launches etc., go through the network[10]. In
Trickums, when we use remote Tier-4, it might be that cudaMalloc was local
(Trickums gave a local pointer), but behind the scenes Trickums might store the
content on a remote node until needed. One could imagine a hybrid: if the remote
node also has a GPU, maybe it could even compute on the data instead of shipping
it— but that enters the realm of distributed computing rather than pure memory
extension. Performance: rCUDA can be surprisingly efficient on fast networks, but
itintroduces latency on every API call. Trickums aims to keep most execution local
to avoid that latency except when swapping large chunks. Another related tech is
NVidia’s upcoming GPU Partitioning/Pooling (which can aggregate multiple GPU
memory spaces via NVLink or NVSwitch in a single system). That’s more specialized
hardware support. Trickums is a software solution that works in more generic
settings, albeit with the cost of PCle/NVMe/Network overhead.

NVIDIA GPUDirect (RDMA and Storage): These are low-level optimizations rather
than memory management on their own. GPUDirect RDMA allows third-party
devices (like NICs) to directly read/write GPU memory. GPUDirect Storage (GDS)
enables GPUs to perform DMA to storage or through an NVMe controller to GPU
memory without bouncing through CPU memory[6]. Trickums doesn’t compete with
these; it leverages them. For example, with GPUDirect Storage, Trickums can issue
aread from the swap file such that the data goes straight into a staging buffer in
VRAM. Without GDS, the data path would be: SSD -> CPU RAM -> copy to VRAM,
which uses extra bandwidth on the CPU side. With GDS: SSD -> VRAM directly
(perhaps via the NVMe DMA engine). This reduces latency and CPU overhead
significantly[26]. Similarly, for remote, using GPUDirect RDMA means the NIC can
inject data into VRAM directly. If Trickums is running on hardware and drivers that
support these features, it can optimize accordingly. Unified Memory in newer CUDA
also can utilize some of these under the hood (e.g., UM on NVLink or NVSwitch can
directly access other GPU memory). The main point: GPUDirect is about efficient
data movement, whereas Trickums is about deciding what data to move when.
They complement each other in achieving the overall goal.

AMD ROCm Unified Memory/ HMM: AMD’s ROCm has a unified memory concept
using Linux Heterogeneous Memory Management (HMM) which is similar to
NVIDIA’s. It allows page migration and CPU-GPU coherent memory on AMD GPUs
(especially MI200 Instinct GPUs)[27][28]. The differences mirror NVIDIA’s case:

https://en.wikipedia.org/wiki/RCUDA#:%7E:text=The%20recommended%20distributed%20acceleration%20architecture,accelerated%20applications%20can%20concurrently
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=You%20need%20to%20install%20CUDA%2C,latency%2C%20and%20reduced%20CPU%20utilization
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=GDS%20is%20useful%20where%20significant,avoid%20many%20of%20those%20bottlenecks
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=Managed%20memory
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=HIP%20supports%20additional%20calls%20that,work%20with%20page%20migration

AMD’s unified memory won’t inherently use disk or remote, it’s within a single
node’s CPU+GPU memory. AMD’s SmartAccess (discussed above) and features
like large BAR make certain operations faster but do not provide oversubscription
beyond host memory either. Trickums could in theory work on AMD GPUs as well,
using their APls to pin memory and handle page faults (if accessible via HMM
events). The concept stays the same.

In summary, what sets Trickums apart is its holistic approach: it combines ideas of
unified memory, caching, and distributed memory into one system explicitly designed for
Al workloads on a decentralized network. Where each related technology addresses a
piece (automatic memory oversubscription, or remote GPU use, or faster I/0), Trickums
integrates them with a guiding narrative — it is aware of the Al model structure (through
Hellhound) and network topology, and it prioritizes usage patterns accordingly. The
metaphoric difference: others are tools or features (like a single enchantment), while
Trickums is an entire spellbook orchestrating an illusion — from small sleights of hand (like
prefetching pages) to grand tricks (swapping across the network).

Integration with ForgeBorn Daemons (Hellhound & Trickums
Collaboration)

Within the ForgeBorn architecture, Trickums does not operate in isolation; it works in
concert with other daemons to maximize efficiency. Hellhound is another core daemonin
ForgeBorn (described in the Genesis scroll) — conceptually, Hellhound could be the
orchestration demon that manages task scheduling, model partitioning (“sharding”), and
workload prediction. The cooperation between Hellhound and Trickums can be imagined
as between a strategist and a quartermaster: Hellhound decides what parts of the model
will be needed and when, while Trickums figures out where to fetch them from and how to
store them.

Here are specific ways Hellhound and Trickums integrate:

e Model Shard Management: ForgeBorn likely breaks large Al models into “shards”
(e.g., different layers or blocks of a neural network, or different attention heads,
etc.) which can be distributed across nodes or loaded/unloaded dynamically.
Hellhound might be responsible for this partitioning — for example, deciding that
Node A will handle layers 1-5 of a model and Node B will handle 6-10, or even within
one node, deciding which chunks of the model to keep in memory at a time.
Trickums provides the memory substrate to back this. Hellhound, knowing the
model’s execution order, can inform Trickums ahead of time: “After the current
layer, the next shard needed will be X (currently on disk or on a peer); prepare it.”
This is essentially predictive prefetching at the high level. Instead of waiting for a
page fault, Trickums can proactively pull in entire shards (several pages worth)
when cued. Hellhound could communicate with Trickums via an APl or shared
memory signals, enumerating which model parts (e.g., weight matrices, activations)
will be required in the next timestep or for the next request.

e Prefetch Daemon: Hellhound might run as a background thread (or separate
process) monitoring the incoming inference requests or training steps. For instance,
consider an LLM (large language model) being served: Hellhound sees the
sequence of layers that will run for each token. As token generation proceeds, it can
always ensure the next layer’s weights are prefetched into VRAM (or at least into
host memory ready to DMA) by the time the current layer finishes. Trickums exports
functions like prefetch_to_gpu(void* ptr, size_t bytes) which Hellhound can
invoke to stage data. This way, ideally, when the compute engine (the GPU) is ready
to consume layer N+1, the data is already in Tier-1 or Tier-2, avoiding a stall. This
tight coupling could drastically reduce the overhead of virtual memory. It’s
essentially overlapping model loading with computation — a form of pipeline.

¢ Hinting Evictions: Hellhound’s global view also helps decide what can be evicted.
For example, if an entire model’s forward pass is done, the activations from layer 1
won’t be needed until possibly backprop (in training) or never again (in inference).
Hellhound can mark those as evictable. Trickums can then eagerly evict or at least
mark them low priority. Another scenario: if Hellhound decides to reroute a certain
model shard to a different node (for load balancing), it can inform Trickums that
“shard Y can be dropped from local memory after this batch, we won’t use it again
soon.” Trickums can then free up VRAM for other things sooner.

e Remote Coordination (VAIPU net): When using Tier-4 remote memory, Hellhound
likely plays a role in negotiating that. Perhaps Hellhound on Node A communicates
with Hellhound on Node B (or a central coordinator) to request memory space. For
instance, Node A might say, “I’m low on local RAM, can someone hold shard Z for
me?” Node B might volunteer and Hellhound sets up a channel. Trickums then will
know that shard Z’s home is Node B and will pull it via RDMA when needed.
Hellhound could also decide to instead move computation to Node B (if Node A is
too constrained), which is an alternate approach (moving compute to data rather
than data to compute). The design likely emphasizes decentralization: so perhaps
the preference is to move data since each node might be doing part of the work. The
interplay is dynamic and could even be market-based (if ForgeBorn has an
economic aspect, maybe nodes “rent” memory to each other).

e Synchronization and Consistency: With Hellhound guiding high-level decisions,
Trickums must ensure consistency of data. If multiple nodes might cache the same
shard, and if that shard updates (e.g., training scenario where weights change),
Hellhound would be responsible for invalidating old copies or updating them.
Trickums could include validation checks (like version numbers on pages) so that
stale data isn’t accidentally used. For inference (read-only weights), consistency is
simpler —replication is fine as long as everyone has the same copy.

In narrative terms, Hellhound could be depicted as a fiery hound that runs ahead on the
path, scouting what lies before the forge’s warriors, while Trickums is the trickster forging
illusions so the army (the GPUs) always find the weapons (data) they need at hand. The

cooperation ensures that even if an individual node’s memory is limited, the network as a
whole can bear the load: Hellhound coordinates, Trickums delivers. This forms the basis of
ForgeBorn’s decentralized Al compute - by dividing and conquering memory demands
among many collaborators, they achieve what a single GPU couldn’t.

A concrete example: Suppose ForgeBorn is serving a massive 70B-parameter language
model across several 8GB GPUs. Hellhound might assign each GPU a certain subset of
layers primarily. When a request comes in, each GPU will handle its layers and then pass
intermediate results. But even within each GPU, 8GB might not hold all its assigned layers
at once. So Hellhound instructs Trickums to load layers 1 and 2 first. GPU runs them, then
while GPU is working on layer 2, Hellhound tells Trickums to start loading layer 3 (which
was on disk or another node). By the time GPU needs layer 3, Trickums has itin VRAM (or at
least in RAM ready to go). Meanwhile, layer 1’s weights can be evicted to free space. And
so on. The Hellhound-Trickums duo essentially perform layer-by-layer streaming, making
sure the GPU is busy computing rather than idly waiting on data. This kind of synergy
between scheduling (Hellhound) and memory virtualization (Trickums) is what allows
ForgeBorn to “operate across low-memory GPUs” effectively.

Pseudocode and System Design of the Trickums Runtime

Toillustrate the design at a lower level, here we present a more cohesive pseudocode
outline of Trickums’ runtime components. This is a conceptual design merging the ideas
discussed:

// Data structures (simplified)
struct Pagelnfo {
void* hostPtr;
bool inVram;
size_t vramOffset;
bool dirty;
Timestamp lastAccess;
}s
struct AllocationMeta {
void* basePtr;
size_t totalBytes;
size_t pageSize;
std: :vector<PageInfo> pages;

}s

// Global state

VramManager vram; // manages VRAM blocks (bitmap of free 4MB chunks, etc.)
DiskSwapManager disk; // manages swap file offsets

LRUList<PageInfo*> lrulList; // global LRU for pages in VRAM

std::map<void*, AllocationMeta*> allocMap; // maps basePtr to meta

// Fault Handler (invoked when GPU page fault occurs or on manual prefetch
request)
void handlePageFault(void* pagePtr) {

AllocationMeta* meta = findAllocForPtr(pagePtr);
size_t pageIndex = ((char*)pagePtr - (char*)meta->basePtr) / meta-
>pageSize;
PageInfo &page = meta->pages[pagelndex];
std::lock_guard<std::mutex> lock(meta->mutex);
if (page.inVram) {
// Already in VRAM (maybe another thread handled it first)
return;
¥
// Need to bring page into VRAM
// Step 1: Find free VRAM slot, evict if necessary
size_t freeSlot = vram.findFreeChunk();
if (freeSlot == NO_FREE) {
PageInfo* evictPage = lrulList.ejectLRU();
evictPageFromVram(evictPage);
freeSlot = evictPage->vramOffset;
¥
// Step 2: Load data into that slot
if (pagelsOnDisk(page)) {
disk.read(page, tempHostBuffer); // read page from disk to
tempHostBuffer
cudaMemcpyAsync (VRAM_ADDR (freeSlot), tempHostBuffer, meta->pageSize,

HtoD);
} else {
// page is in host RAM (pinned), can DMA directly
cudaMemcpyAsync (VRAM_ADDR(freeSlot), page.hostPtr, meta->pageSize,
HtoD);
}

cudaStreamSynchronize(9); // wait for copy to complete (or use events)

// Step 3: Update metadata

page.inVram = true;

page.vramOffset = freeSlot;

page.dirty = false; // assume loaded data is up-to-date (weights or zero-
inited)

page.lastAccess = now();

lruList.insert(&page);
}

// Evict a page from VRAM to host or disk
void evictPageFromVram(PageInfo* page) {
// Called when needing to free a VRAM slot
if (page->dirty) {
// Write back to host or disk
if (hostMemoryAvailable()) {
// move to host pinned memory
cudaMemcpyAsync(page->hostPtr, VRAM _ADDR(page->vramOffset),
PAGE_SIZE, DtoH);
// (if host is full, we might directly write to disk from VRAM if
possible)
} else {

// host RAM full, write to disk
void* swapBuf = getTempBuffer();
cudaMemcpy (swapBuf, VRAM_ADDR(page->vramOffset), PAGE_SIZE,
DtoH);
disk.write(page, swapBuf);
}
}
page->inVram = false;
// Free VRAM chunk
vram. freeChunk(page->vramOffset);
// Remove from LRU list, etc.

}

This pseudocode is highly simplified (synchronous, no error handling, single stream
assumption), but it captures the essence: - handlePageFault finds which page is needed,
ensures a VRAM slot by possibly evicting something else (using LRU), then loads the page
from wherever it is (RAM or disk) into VRAM, and updates metadata. In practice this would
be triggered by an actual page fault signal from CUDA or by a prefetch call. -
evictPageFromVram handles writing a page back out if needed and marking it not in VRAM.
Note that if the page wasn’t modified (dirty==false), and if it’s just weights from disk, we
could skip writing back —we could just drop it knowing we have a copy on disk. The code
above is conservative (always writes back if dirty flag set).

The Trickums runtime would have multiple threads: one could be an asynchronous pager
(servicing page faults or prefetch requests), one could handle disk I/O completion, etc., to
avoid stalling the main thread. Modern OS integration (like using the Linux uffd userfaultfd
mechanism or Windows’ equivalent) could allow user-space handling of page faults;
NVIDIA’s driver doesn’t expose page faults directly to user, but unified memory does
behind the scenes. If Trickums is built in user space, it might rely on UVM to trigger data
movement and just guide it. If built as a kernel module or driver layer, it could intercept at a
lower level.

Security and Correctness Checks: The pseudocode above omits them, but Trickums
must ensure: - Memory bounds are respected (no reading beyond allocated regions - likely
handled by hardware page protections). - GPU kernels do not read uninitialized data -
Trickums might zero-fill pages on first allocation if needed (just like an OS zeroes pages for
security). - Data in transit to remote nodes might need encryption for security if going over
untrusted networks (ForgeBorn being decentralized implies possibly untrusted peers).
Trickums could integrate encryption/decryption for any sensitive data leaving the local
node, to prevent snooping. This adds overhead but can be offloaded (maybe via GPU
encryption engines or using NIC offload). - If a remote node fails or disconnects while
holding some memory pages, Trickums/Hellhound need contingency: perhaps replication
of critical data on more than one node, or quickly recompute/replace missing data from
disk if possible. For example, if a remote memory tier was being used as cache for disk
data, losing it means you can fallback to local disk copy. - Validation of data integrity: using
checksums for pages on disk or received from network ensures correctness. Trickums

might store a hash for each page on disk such that when reading back, it can detect
corruption (rare but possible in case of disk error). Similarly, network packets could be
corrupted; CRC at lower layers helps, but end-to-end checksum could too. - Deadlock
avoidance: If Trickums requires GPU to copy something but GPU is busy waiting on
Trickums (like if all copy engines are tied up), careful ordering and using separate streams
is needed. The design ensures that a page fault handling uses a separate CUDA stream for
HtoD copy that can execute even if default stream has a running kernel (because
otherwise you’d have a catch-22: kernel waiting for data, but data copy queued behind that
kernel on same stream). So Trickums uses either the dedicated copy stream or leverages
the UVM’s ability to page in concurrently.

All these details make Trickums a fairly complex system, almost an OS within an OS for
GPU memory. Arigorous testing and validation phase is needed —injecting known access
patterns and ensuring data output matches a baseline (to catch any scenario where
Trickums might, say, accidentally drop a needed page or not load something in time
causing incorrect results or crashes).

Security, Correctness, and Validation

Operating at such a low level with memory, Trickums must maintain strict correctness and
consider security in a decentralized environment:

e Memory Safety: Trickums never exposes memory belonging to one process/node
to another unauthorized process. In a multi-tenant scenario, each client’s
allocations are tracked separately. Even though Trickums intercepts calls globally,
it tags allocations by which client or model they belong to, and isolates their
address spaces. This is akin to an OS having separate page tables per process. In
ForgeBorn, if multiple models or users share a GPU, Trickums ensures one user’s
data swapped to disk is encrypted or at least not accessible by another user. On a
single user scenario, it ensures pointers are valid — any access outside allocated
ranges should ideally trigger a fault and be handled gracefully (or be caught and
reported).

e Data Encryption: As mentioned, Tier-4 remote memory usage raises trustissues:
you might not fully trust a peer to hold your model weights (they might copy them).
For economic inclusivity, maybe models are community property, but if not,
Trickums could integrate encryption for pages before sending to a remote cache.
The remote node then just stores cipher text and returns it; the local node would
decrypt upon retrieval. This could use symmetric encryption with keys managed by
the owner. There’s a performance cost, but for highly sensitive data it may be worth
it. Alternatively, secret-sharing the model shards or splitting across peers so no
single peer has a usable piece of the model could be an approach (beyond Trickums
scope, perhaps Hellhound level trust management).

Validation & Checksums: To ensure no data corruption, Trickums can maintain a
checksum for each page’s content (particularly for disk pages). When writing to
disk, store a hash; on reading back, recompute and verify. This catches disk errors
or stray writes. In network transfers, built-in CRC and our own end-to-end hash can
ensure data integrity across the wire. It’s important because a single bit flipin a
model weight could cause weird issues in inference; better to detect and maybe re-
send the data.

Resource Limits and DoS: Trickums should enforce quotas so that a single user
doesn’t consume infinite disk space or memory beyond intended. It likely has
configurable limits for how much disk swap to use, how much remote memory to
borrow, etc. If multiple processes use Trickums, it should prevent thrashing the
system into the ground (for example, two heavy oversubscribers could continuously
swap and saturate the disk, making everything slow). Hellhound, as a scheduler,
can also mitigate by not over-committing memory beyond what Trickums can
handle with some baseline performance.

Correctness in Eviction Logic: The algorithm must avoid evicting something that is
currently in use. Trickums uses reference counting or pin counting for pages: e.g., if
a kernelis actively using page X (we can know if a page was faulted in and the kernel
hasn’t finished), we mark it as in-use so it’s not evicted mid-use. Typically, page
fault handling in CUDA ensures this by design: it won’t evict a page until a kernelis
done with it. Trickums should coordinate with such mechanisms or add its own
locks. Also, multi-GPU cases (if one GPU could access memory of another via
NVLink or CPU pointers) complicate it, but likely ForgeBorn uses one Trickums
instance per GPU device.

Testing Approach: A robust test would involve running known workloads with
Trickums and verifying results match non-Trickums runs. Memory torture tests
(allocating more than VRAM and writing patterns to memory to ensure they read
back correctly) will be part of validation. Also performance benchmarking to ensure
that the overhead is manageable (Trickums might allow e.g. 2x model size with 50%
slowdown; if it were 10x slowdown that might not be acceptable for some use-
cases —tuning needed).

In the narrative: Trickums’ illusions are potent, but must be handled with care lest the
illusion falter. Thus, there are safeguards (magical wards, if you will) to ensure the
deception never leads to actual chaos — data lost in the ether or secrets stolen by
eavesdroppers.

Use Cases and Deployment Scenarios

The Trickums system unlocks several practical scenarios in the ForgeBorn ecosystem:

Running Large Models on Consumer GPUs: This is the flagship use-case. For
instance, imagine a researcher with a gaming GPU (say 6 GB VRAM) wanting to run a

transformer model that normally requires 16 GB. With Trickums, they can load the
model (perhaps 12 GB weights plus overhead) and Trickums will automatically
swap parts in and out. The researcher simply runs their PyTorch code; behind the
scenes, Trickums might be moving layers to host RAM and back. The costis some
slowdown due to transfers, but if the model is primarily for inference and can
tolerate some latency, this enables access to models that were previously out of
reach. It fosters economic inclusivity: you don’t need a $3000 GPU to participate in
Al tasks — even a cheaper card, supplemented by your system RAM and fast SSD,
can contribute. For example, Stable Diffusion image generation on a 4 GB card
could generate high-res images by swapping UNet weights layer by layer, albeit a bit
slower. Community demos have shown even without Trickums, it’s possible by
manually offloading layers; Trickums automates and generalizes that process.

Inference-Only VAIPU Nodes: In a decentralized network, not all nodes will do
training or heavy multi-GPU tasks. Some might be inference specialists —e.g., an
edge server or a user’s desktop that only performs forward passes on models to
serve answers. These VAIPU (Virtual Al Processing Unit) nodes might have
minimal GPU or none at all. With Trickums, even a node with just a CPU could host
a large model in a hybrid CPU-GPU way: perhaps the CPU holds most of the model
in RAM and only small chunks are sent to a tiny GPU for acceleration on critical
parts. Orif truly no GPU, Trickums might not apply (it’s GPU memory virtualization),
but those nodes could serve as remote memory providers to others. More
interestingly, an inference node with a small GPU can leverage remote memory
from a neighbor: for instance, a node with a 4 GB GPU can borrow another 4 GB over
the network from a neighbor’s idle VRAM, effectively acting like an 8 GB GPU
logically. In practice, this could mean the difference between being able torun a
particular model or not. Latency is critical in inference though: one has to design
the model execution to hide the latency of fetching remote chunks (which
Hellhound’s prefetch can help with). An inference-only node could also dedicate
more of its resources to caching model data rather than doing backprop or such,
which fits Trickums well.

Distributed Training with Swap: Training large models usually involves multi-GPU
setups or model parallelism. Trickums could facilitate a form of model parallelism
where each GPU gets a part of the model and swaps layers in/fout when needed.
However, training has the complication of backward pass requiring gradients and
possibly needing the weights again. Trickums could still help by offloading optimizer
states or gradients to CPU memory between iterations, etc. There is a known
approach called ZeRO-Offload (in Microsoft DeepSpeed) that offloads optimizer
memory to CPU to allow training bigger models on limited GPU memory. Trickums
could be used to implement something like ZeRO-Offload in a general way: all those
additional tensors (optimizer, momenta, etc.) can be keptin host memory and
paged in when required for update step, then paged out. This would allow, for
instance, training a model that needs 20 GB of memory on a GPU with 10 GB, by

leveraging 16 GB of system RAM for the optimizer states and activations, at some
performance cost.

Remote-Swap Setups and Memory Sharing: In a scenario where a few machines
are connected (a small cluster or even ad-hoc between friends across the internet),
remote-swap can shine. For example, suppose one machine has a powerful GPU
with low VRAM (say a Tesla T4 with 16 GB) and another machine has a mid GPU with
8 GB but lots of free RAM or a spare GPU that’s idle. The first machine could use the
second as a “swap server” —instead of hitting its disk, it goes over 10 Gbit Ethernet
to the second machine’s memory. If that network is fast enough (and latency ~ say
1ms), this might beat an NVMe drive on latency (which might be 0.1ms, actually
NVMe is quite low latency and 1Tms would be slower; but multiple outstanding
requests could hide latency). In any case, in a cluster with a fast fabric (InfiniBand,
NVLink P2P if within a node, or PCle peering), sharing memory can yield interesting
possibilities:

A form of GPU memory pooling: some recent HPC systems allow pooling GPU
memory via NVSwitch such that one GPU can use memory attached to another GPU
almost as if it was local (with NVSwitch providing high bandwidth). Trickums could
mimic that in software over network or PCle: not as fast, but conceptually similar.

High availability: if one node’s disk is slow, but another node’s disk is a super-fast
NVMe, perhaps even that could be leveraged (though at that point, just put NVMe in
each node for local).

A remote-swap setup might also be useful in cloud or container environments: one
container can use memory from another physical host in the cluster — effectively
disaggregating memory from compute. This aligns with trends in data centers to
disaggregate resources (so you could independently scale GPU compute and memory
capacity). Trickums could be part of that software stack enabling memory disaggregation
for GPUs.

Edge Computing and loT: In edge scenarios, you might have GPU-equipped
devices that are memory-constrained (like a Jetson Nano with 4GB). Trickums could
allow such a device to still run larger models by streaming data from a central
server. For instance, an AR headset with a small GPU could run an Al model by
fetching weights on-the-fly from a nearby edge server when needed. The trade-off is
latency and connectivity, but if done intelligently (prefetching based on sensor
context-e.g., the AR app guesses which Al tasks or model parts will be needed
next), it can work. This is an advanced use-case but shows the possibility of
Trickums enabling compute anywhere - you are not barred from running
something just because of memory, as long as you have some form of storage or
network.

In all these scenarios, performance will vary. Trickums is not a magic that makes an 8GB
card as fast as a 16GB card with a heavy model —there will be slowdowns due to data

transfer. However, the key is that it makes it possible at all, and often the slowdowns can
be mitigated by overlap and smart scheduling. For instance, if an inference pipeline is well-
optimized, maybe running a 2x model on half memory could still achieve 50-70% of the
throughput of the full-memory scenario (just hypothetical). The user must balance memory
vs speed, but Trickums gives that flexibility.

Deployment wise, Trickums would be installed as part of the ForgeBorn client on each
node. Likely it requires a kernel driver or at least admin privileges to lock memory and tune
system for minimal paging interference (one wouldn’t want the OS to swap pinned memory
out to disk — pinned usually means it won’t, but it consumes RAM so OS should have
enough headroom). It could also come with a monitoring tool to observe how much it’s
swapping (so advanced users can realize if they’re thrashing too much, maybe they choose
a smaller model or upgrade hardware).

Future Enhancements (Compression, Sparsity, Al-driven Policies)

Trickums as described is already powerful, but there are exciting avenues to enhance it
further:

¢ Memory Compression: Compressing data can effectively increase the capacity of
each tier and reduce transfer times, at the cost of compute overhead for
compress/decompress. There are a few angles:

e Lossless compression (e.g., LZ4 or ZSTD) on pages before writing to disk or sending
over network. If model weights contain redundant patterns or zeros, this could
reduce size. Even a 2:1 compression means half the disk 10 and network traffic,
which is significant. The overhead of compressing a 4MB page might be a few
microseconds (if using fast algorithms and possibly hardware accelerators).
NVIDIA’s Nsight might identify patterns to exploit as well.

e Lossy compression or quantization specifically for model weights: e.g., if using 16-
bit floats, maybe compress to 8-bit on disk and then convert back to float16 on
load. Or more exotic: store differences between weights (which might be smaller
entropy). However, lossy could affect model accuracy, so likely not unless done
carefully (some frameworks do allow running models in lower precision to save
memory though).

e Compressed Page Cache: Anotherideais, similar to some OSes (like Windows
compresses memory in RAM before swapping to disk), Trickums could compress
pages when moving from VRAM to RAM if the overhead is acceptable. GPUs
themselves have compression tech (like delta color compression in graphics) but
for general memory not so much. Perhaps some pages like activation tensors could
compress well (sparsity or low entropy after ReLUs). This is speculative but worth
researching.

e Exploiting Sparsity: Many deep learning models have sparse patterns: e.g., large
embedding matrices where not all vectors are used for a given batch, or activation
maps with zeros. Trickums could integrate a sparse paging mechanism: rather than

moving full dense pages, it only moves the non-zero elements or chunks actually
needed. For example, if a model has a giant embedding table and an inference only
touches 5% of it, Trickums doesn’t need to swap in the whole thing, just the parts
being accessed. This requires understanding of data structures (maybe via hooks in
the framework - e.g., know which indices will be looked up and only fetch those).
It’s more of a model-specific optimization, but one that could drastically cut
memory usage for some cases. Another aspect is storing sparse pages efficiently on
disk (only store non-zero and an index map). If a model is pruned and 30% of
weights are zero, maybe that compresses anyway, or we could avoid moving those
zeros at all by marking them and skipping.

Al-Driven Prefetch/Eviction: Instead of fixed heuristics like LRU, an Al model could
be trained (offline or online) to predict which pages will be needed and which can be
evicted. The research we referenced earlier proposed using RNN or Transformer
models on memory access traces[14][29]. Trickums could incorporate a lightweight
predictor that classifies pages or sequences of accesses. For instance, observing
the last few layer accesses or last few batches’ pattern, it might predict “after using
page 5, 7, 3, we likely need 6 next” — so prefetch page 6. Or in eviction, it might
predict a page that hasn’t been used in a while but will be used again soon (so don’t
evict it, evict another that truly won’t be used). Over time, such a system could
adapt to different models: e.g., CNNs have sequential layer access (easy to
predict), whereas something like a Transformer might revisit certain weights (maybe
in attention blocks sharing keys/values) — a learned predictor might catch those
nuances. The cost is complexity and overhead of running the predictor; but maybe a
small neural net on the CPU could run asynchronously. If ForgeBorn nodes have
some idle CPU cores, dedicating some to smarter memory management could pay
off in higher effective throughput.

Hardware Integration: In the future, Trickums concepts might be integrated into
GPU hardware/drivers. For now, it’s a software overlay. But one could imagine a
specialized NVMe SSD with GPU-side compression, or NIC that knows about
Trickums pages and caches them, etc. If ForgeBorn grows, maybe even a custom
“ForgeBorn co-processor” could assist (this goes beyond our scope, but fun to
imagine).

Better Remote Coordination: Perhaps dynamic load balancing where if one node
is constantly pulling from another’s memory, maybe they should just transfer some
of the compute or permanently migrate that part of model to the first node’s disk
and stop fetching repeatedly from remote. Hellhound likely can handle that: after a
period, it might say “it’s cheaper to just copy shard Z over to my disk so | use that
instead of bothering node B each time.” Trickums would then repoint to local
storage. This blur between memory and placement is interesting — memory
virtualization could lead to discovering that some models should be re-sharded for
efficiency.

https://arxiv.org/pdf/2204.02974#:%7E:text=the%20RNN%20model%20to%20the,knowledge%20from%20collected%20memory%20traces
https://arxiv.org/pdf/2204.02974#:%7E:text=etc,the%20prediction%20results%20with%20the

e User Controls and Telemetry: Exposing more controls: a user might set a policy
like “use at most X GB of my disk for swap” or “prefer to use remote memory if
available to save my SSD’s lifespan” (SSDs wear out with too many writes —
something Trickums should consider by maybe using mostly read from disk and
minimal write, or using RAM as write-back cache to reduce SSD writes). Telemetry
could show how much data is being moved, average latency of page faults, etc., to
give insight and allow tuning. In a decentralized economy, this might even feed into
pricing: e.g., if you borrow memory from peers a lot, you pay tokens; if you use your
disk instead, no cost but you accept slower speed.

Finally, framing it back in the narrative: these enhancements are like finding new alloys and
enchantments to further strengthen the ForgeBorn arsenal — compressing memory like
folding steel, skipping zeros like an arrow finding the gaps, and even employing predictive
magic to foresee needs. With Trickums continuously evolving, the “VRAM illusion” can only
become more convincing, inching closer to making the hardware limits disappear entirely
from the user’s perspective.

Conclusion

Trickums, the VRAM illusion layer of ForgeBorn, stands as a compelling marriage of
metaphor and engineering. It extends the notion of memory beyond physical constraints:
through a hierarchy of forges and phantoms - from the red-hot GPU VRAM to the cool
expanse of system RAM, down to the deep vaults of disk, and across the ether to allied
nodes’ memory. The system’s design draws on proven concepts (paging, caching, unified
memory) and innovates by orchestrating them in a distributed, Al-informed context. By
intercepting and managing memory at every turn, Trickums deceives the harsh reality of
limited VRAM, presenting instead a boundless vista of memory where large models roam
freely.

In practice, Trickums enables a form of democratized Al compute: one where a hobbyist’s
PC with a mid-range GPU can contribute to or benefit from the same Al models that
traditionally demanded enterprise hardware. It levels the field by leveraging what’s
abundant (disk, network, system RAM) to make up for what’s scarce (GPU RAM). The cost -
some added latency or complexity —is tempered by careful planning (Hellhound’s
foresight, asynchronous transfers) and thus kept in check.

As we look ahead, Trickums could very well be the cornerstone that allows the ForgeBorn
network to scale elastically. It provides the backbone for economically inclusive Al,
where nodes of varying capability can join forces, share resources, and ensure that
knowledge (models) flows to wherever there’s compute available, without hitting a
memory wall. This companion whitepaper to the ForgeBorn Genesis Scroll has delved into
the technical depths of Trickums, but through the lens of narrative — we’ve seen Trickums
as the illusionist, the blacksmith’s apprentice, the sorcerer of memory. In doing so, we
hope the design is not only clear in engineering terms, but also vivid in concept.

Ultimately, Trickums is about empowerment: empowering hardware to do more than its
specs, empowering individuals to participate in Al at scale, and empowering the ForgeBorn
collective to wield “the fire of the forge” — the massive power of Al models — without being
extinguished by practical limits. Through tempered design and clever deception, Trickums
keeps the forge flames alight, ensuring that no GPU, however small, is left behind in the
quest to forge intelligence from data.

Sources: The design of Trickums builds upon prior art and concepts such as NVIDIA’s
Unified Memory and GPUDirect technologies[4][6], remote GPU virtualization frameworks
like rCUDA[9], and research into GPU memory oversubscription[8][13]. Pinned host
memory provides a CPU-GPU bridge albeit with lower bandwidth[2], and Resizable BAR
(Smart Access Memory) shows the benefits of broadening CPU-GPU addressability[23]. By
integrating these ideas and extending them with a tiered approach and distributed
awareness, Trickums creates a unique solution to push beyond the traditional VRAM
limits. The cooperation with ForgeBorn’s Hellhound for prefetching model shards is a novel
layer, aligning with suggestions that smarter (even ML-driven) policies can significantly
reduce thrashing and improve utilization[17][18]. In sum, Trickums is an embodiment of
multiple state-of-the-art strategies unified under one “roof” to serve the ForgeBorn vision.

[1] Resource Management Concepts | Kinetica Docs
https://docs.kinetica.com/7.1/rm/concepts/

[2]1[3][27][28] GPU memory — ROCm Documentation
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html

[4]1112]1[19][20] [22] Improving GPU Memory Oversubscription Performance | NVIDIA
Technical Blog

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-
performance/

[5][6][26] GPUDirect Storage support for IBM Storage Scale

https://www.ibm.com/docs/en/storage-scale/5.2.27topic=architecture-gpudirect-
storage-support-storage-scale

[7]1[8] PowerPoint Presentation

https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper._files/pap194s5.pd
f

[9][10] rCUDA - Wikipedia

https://en.wikipedia.org/wiki/RCUDA

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=are%20resident%20on%20the%20host,GPU%20interconnect
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=You%20need%20to%20install%20CUDA%2C,latency%2C%20and%20reduced%20CPU%20utilization
https://en.wikipedia.org/wiki/RCUDA#:%7E:text=rCUDA%2C%20which%20stands%20for%20Remote,less%20energy%2C%20acquisition%2C%20and%20maintenance
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=%E2%80%A2%20Cannot%20go%20beyond%20host,GPUfs%2C%20ActivePointers
https://research.spec.org/icpe_proceedings/2022/proceedings/p67.pdf#:%7E:text=The%20impact%20of%20UVM%20on,3%20Summary%20of%20Prior%20Arts
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=Pinned%20memory%20%28or%20page,device%20bandwidth%20%28%3E40x%20on%20MI200
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=The%20BAR%20has%20existed%20for,the%20CPU%20at%20any%20time
https://arxiv.org/pdf/2204.02974#:%7E:text=eviction%20policies%20can%20not%20handle,5%5D%20apply
https://arxiv.org/pdf/2204.02974#:%7E:text=a%20deep%20learning,for%20current%20learning%02based%20methods%20while
https://docs.kinetica.com/7.1/rm/concepts/#:%7E:text=The%20VRAM%20Tier%20is%20composed,located%20in%20the%20VRAM%20Tier
https://docs.kinetica.com/7.1/rm/concepts/
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=Pinned%20memory%20%28or%20page,device%20bandwidth%20%28%3E40x%20on%20MI200
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=be%20used%20on%20both%20host,device%20bandwidth%20%28%3E40x%20on%20MI200
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=Managed%20memory
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html#:%7E:text=HIP%20supports%20additional%20calls%20that,work%20with%20page%20migration
https://rocm.docs.amd.com/en/docs-6.0.0/conceptual/gpu-memory.html
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=are%20resident%20on%20the%20host,GPU%20interconnect
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=In%20this%20test%20case%2C%20the,memory%20in%20the%20following%20way
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=traditionally%20known%20to%20achieve%20maximum,fault%20event%20is%20triggered
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=Random%20warp%20access%20pattern%20yields,space%20for%20other%20memory%20fragments
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/#:%7E:text=Upon%20kernel%20invocation%2C%20GPU%20tries,GPU%20interconnect
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=IBM%20Storage%20Scale%27s%20support%20for,diagnostic%20information%20for%20GPUDirect%20Storage
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=You%20need%20to%20install%20CUDA%2C,latency%2C%20and%20reduced%20CPU%20utilization
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale#:%7E:text=GDS%20is%20useful%20where%20significant,avoid%20many%20of%20those%20bottlenecks
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale
https://www.ibm.com/docs/en/storage-scale/5.2.2?topic=architecture-gpudirect-storage-support-storage-scale
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=Related%20Work%20%E2%80%A2%20Out,storage%20space%20%E2%9E%94%20Need%20fread%2Ffwrite
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf#:%7E:text=%E2%80%A2%20Cannot%20go%20beyond%20host,GPUfs%2C%20ActivePointers
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf
https://sc18.supercomputing.org/proceedings/tech_paper/tech_paper_files/pap194s5.pdf
https://en.wikipedia.org/wiki/RCUDA#:%7E:text=rCUDA%2C%20which%20stands%20for%20Remote,less%20energy%2C%20acquisition%2C%20and%20maintenance
https://en.wikipedia.org/wiki/RCUDA#:%7E:text=The%20recommended%20distributed%20acceleration%20architecture,accelerated%20applications%20can%20concurrently
https://en.wikipedia.org/wiki/RCUDA

[11] Role of GPUDirect RDMA & RoCE in Optimized Paths
https://wolfadvancedtechnology.com/role-of-gpudirect-rdma-roce-in-optimized-paths/
[13] Oversubscribing GPU Unified Virtual Memory: Implications and Suggestions
https://research.spec.org/icpe_proceedings/2022/proceedings/p67.pdf
[14]1[15][16][17][18][29] arxiv.org

https://arxiv.org/pdf/2204.02974

[21] Does CUDA unified memory support LRU or LFU eviction policies when moving data
between host and gpu? - CUDA Programming and Performance - NVIDIA Developer
Forums

https://forums.developer.nvidia.com/t/does-cuda-unified-memory-support-lru-or-lfu-
eviction-policies-when-moving-data-between-host-and-gpu/324154

[23][24][25] How to get the most out of Smart Access Memory (SAM) - AMD GPUOpen

https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/

https://wolfadvancedtechnology.com/role-of-gpudirect-rdma-roce-in-optimized-paths/#:%7E:text=Paths%20wolfadvancedtechnology,transaction%20is%20carried%20over
https://wolfadvancedtechnology.com/role-of-gpudirect-rdma-roce-in-optimized-paths/
https://research.spec.org/icpe_proceedings/2022/proceedings/p67.pdf#:%7E:text=The%20impact%20of%20UVM%20on,3%20Summary%20of%20Prior%20Arts
https://research.spec.org/icpe_proceedings/2022/proceedings/p67.pdf
https://arxiv.org/pdf/2204.02974#:%7E:text=the%20RNN%20model%20to%20the,knowledge%20from%20collected%20memory%20traces
https://arxiv.org/pdf/2204.02974#:%7E:text=This%20paper%20makes%20the%20following,based%20methods%2C%20and%20we
https://arxiv.org/pdf/2204.02974#:%7E:text=%E2%80%A2%20To%20our%20knowledge%2C%20this,for%20current%20learning%02based%20methods%20while
https://arxiv.org/pdf/2204.02974#:%7E:text=eviction%20policies%20can%20not%20handle,5%5D%20apply
https://arxiv.org/pdf/2204.02974#:%7E:text=a%20deep%20learning,for%20current%20learning%02based%20methods%20while
https://arxiv.org/pdf/2204.02974#:%7E:text=etc,the%20prediction%20results%20with%20the
https://arxiv.org/pdf/2204.02974
https://forums.developer.nvidia.com/t/does-cuda-unified-memory-support-lru-or-lfu-eviction-policies-when-moving-data-between-host-and-gpu/324154#:%7E:text=,to%20load%20pages%20into%20VRAM
https://forums.developer.nvidia.com/t/does-cuda-unified-memory-support-lru-or-lfu-eviction-policies-when-moving-data-between-host-and-gpu/324154
https://forums.developer.nvidia.com/t/does-cuda-unified-memory-support-lru-or-lfu-eviction-policies-when-moving-data-between-host-and-gpu/324154
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=The%20BAR%20has%20existed%20for,the%20CPU%20at%20any%20time
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=With%20the%20introduction%20of%20Smart,GPU%20performance%20using%20this%20feature
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/#:%7E:text=%60VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT%20,can%20directly%20access%20over%20PCIe%C2%AE
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/

	Trickums: The VRAM Illusion System of ForgeBorn
	Introduction – Forging an Illusion of Memory
	Tiered Virtual Memory Architecture
	Implementation Strategies and Memory Management
	Intercepting CUDA Allocations and Deallocations
	Memory Paging, Eviction Policies, and Page Migration
	Handling Fragmentation, Alignment, and Bandwidth Considerations
	C++ Integration with PyTorch (Shim Layer)

	Comparison to Related Technologies
	Integration with ForgeBorn Daemons (Hellhound & Trickums Collaboration)
	Pseudocode and System Design of the Trickums Runtime
	Security, Correctness, and Validation
	Use Cases and Deployment Scenarios
	Future Enhancements (Compression, Sparsity, AI-driven Policies)
	Conclusion

