
Trickums: The VRAM Illusion System of ForgeBorn 
Introduction – Forging an Illusion of Memory 
Deep within the ForgeBorn Genesis Scroll, a cunning artificer daemon named Trickums is 
described as a master of illusions, capable of conjuring phantom memory out of thin air. In 
practical terms, Trickums is the virtual GPU memory system of the ForgeBorn network – a 
layer that deceives CUDA and PyTorch into believing more VRAM exists than is physically 
available. Much like a blacksmith tempering a blade in the flames, Trickums “tempers” 
ForgeBorn’s capabilities by stretching limited GPU memory into a multi-tiered continuum. 
This system of memory deception allows even low-VRAM consumer GPUs to participate in 
heavy AI workloads, forging the backbone of economic inclusivity in a decentralized AI 
compute network. By weaving these VRAM illusions, Trickums ensures that no 
contributor’s GPU is too small to join the grand forge. 

At its core, Trickums intercepts memory allocation requests from frameworks (like 
PyTorch) and allocators (CUDA) and services them through a tiered virtual memory 
architecture. When an AI model or data allocation would normally exceed a GPU’s local 
VRAM, Trickums steps in to silently offload and retrieve data from other memory tiers – all 
while the GPU “believes” it still has a giant contiguous VRAM pool. The result is analogous 
to classic virtual memory on CPUs (where disk swap extends RAM), but for GPUs: it 
harnesses system RAM, fast storage, and even remote GPUs as extended VRAM. By 
orchestrating data movement behind the scenes, Trickums maintains the illusion that the 
GPU’s cup runneth over with memory, letting large neural models run on modest 
hardware. In the sections below, we detail the architecture of this VRAM illusion system 
(code-named Trickums), its implementation strategies, comparisons to related 
technologies, and how it collaborates with other ForgeBorn daemons (like Hellhound) to 
keep the forge’s flames burning efficiently. 

Tiered Virtual Memory Architecture 
Trickums organizes GPU memory into a pyramid of tiers, each representing a level of the 
VRAM illusion – from the fast and small at the top to the vast and slow at the bottom. This 
design mirrors a tempered sword with layered alloys: the hardest steel at the edge and 
supportive layers beneath. The tiered architecture ensures that frequently used data stays 
in the fastest memory, while less-critical data is pushed to slower backing stores. The tiers 
are: 

1. Tier-1: Physical GPU VRAM (Fast “Forge’s Crucible”) – The genuine video memory 
on the GPU card. This is the smallest and fastest tier (often 8–24 GB on consumer 
cards, with >600 GB/s bandwidth on modern GDDR or HBM). All GPU computations 
must ultimately operate on data in VRAM – it’s the “white-hot core” of the forge[1]. 
Trickums prioritizes keeping active working sets here. However, when a model’s 
memory needs exceed this physical VRAM, Trickums will transparently evict or 
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avoid using some VRAM-resident data, making space for what’s immediately 
needed. Think of VRAM as the primary cache for GPU execution – precious and 
finite. 

2. Tier-2: Pinned System RAM (Large “Anvil” Memory) – The next tier is the host 
machine’s main memory (RAM) that has been page-locked (pinned) and mapped for 
GPU access. By pinning, Trickums ensures this memory cannot be paged out by the 
OS and is accessible over the PCIe/NVLink bus directly from GPU[2]. In metaphor, 
this is the supportive anvil – larger than the crucible, but cooler and a step removed. 
Pinned RAM can serve as an extension of VRAM: the GPU can fetch data from it via 
the interconnect (using zero-copy access) without explicit copying, albeit at much 
lower bandwidth and higher latency (often 10–40× slower than local VRAM 
access[3]). Trickums uses this tier for data that is too large to fit in VRAM or not 
currently being actively processed. By staging overflow data in host memory, 
Trickums creates an illusion of a bigger GPU memory pool. Modern unified memory 
systems use similar concepts, where a GPU page fault triggers data migration from 
host RAM to VRAM[4]. Trickums extends this by actively managing what resides in 
RAM vs VRAM using custom policies (described later). This tier’s capacity is 
typically tens of GB (the machine’s RAM minus what the OS and apps use), and it’s 
much larger than VRAM but slower due to PCIe limits (~16 GB/s for PCIe4 x16). 

3. Tier-3: NVMe Disk Swap (Mass Storage “Vault”) – If pinned RAM is also 
insufficient to hold all the needed data, Trickums employs the local disk – usually a 
high-speed NVMe SSD – as a backing store for GPU memory overflow. This is 
analogous to a traditional pagefile or swap partition on disk, but optimized for GPU 
access patterns (large, sequential transfers). In the forge metaphor, this is a deep 
storage vault or archive – massive capacity (hundreds of GB or more) but with the 
coldest, slowest access. Trickums can swap out data from RAM to disk when RAM 
fills up, thereby virtually extending GPU memory beyond the sum of VRAM and 
RAM. Modern SSDs can exceed 3 GB/s throughput, and with technologies like 
NVIDIA GPUDirect Storage or Microsoft DirectStorage, data can be transferred 
between GPU and NVMe with minimal CPU involvement. In fact, GPUDirect Storage 
“enables a direct path between GPU memory and storage, bypassing the CPU, to 
reduce latency and load”[5][6]. Trickums leverages such techniques: for example, 
when loading model weights from an NVMe-based swap file, it can initiate direct 
DMA transfers from SSD to the GPU’s memory (or to pinned buffers) 
asynchronously. This tier behaves like a GPU-focused swap file – when Tier-2 
(RAM) is at capacity, pages of data evicted from GPU can be written to NVMe, and 
later brought back in on demand. Of course, the performance hit is significant 
(NVMe latency in the tens of microseconds and throughput an order lower than 
VRAM), so Trickums treats this as a last resort cache. Still, by using disk swap, 
Trickums can achieve “virtually unlimited” effective VRAM, limited only by disk 
size[7]. (In research, systems like DRAGON demonstrated mapping NVM storage 
into GPU address space to extend memory transparently[7][8].) Tier-3 ensures that 
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even if a model’s memory footprint is hundreds of gigabytes, it can be handled in 
chunks, with Trickums swapping pieces in and out as needed. 

4. Tier-4: Remote GPU/Host Memory via VAIPU Network (Distributed “Allied 
Forges”) – An optional extension tier, Trickums can reach out across the 
ForgeBorn’s distributed network (the VAIPU net – possibly “Virtual AI Processing 
Unit” network) to utilize memory on peer nodes. In this scenario, if one node’s local 
resources are saturated, it can offload some model shards or data pages to another 
node’s RAM or even its GPU memory, over high-speed network links. This is akin to 
borrowing an ally’s furnace when yours is full – forging in a collaborative smithy. 
Remote memory access is facilitated by fast interconnects (InfiniBand or NVMe-
over-Fabrics, etc., depending on the deployment). Technologies such as Remote 
CUDA (rCUDA) hint at what’s possible: rCUDA allows an application to allocate and 
use a GPU over the network as if it were local, by intercepting CUDA API calls and 
forwarding them to a remote server[9][10]. Trickums’ use of remote memory is 
similar in spirit, but rather than offloading the entire computation to a remote GPU, 
it selectively uses remote memory to extend the local GPU’s capacity. For example, 
a peer node might hold a chunk of a neural network’s weights in its VRAM or RAM; 
Trickums on the local node will request those chunks via RDMA when needed. 
Ideally, if the cluster has an RDMA-capable network (InfiniBand or RoCE), the data 
can stream directly from the remote node’s memory into the local GPU’s memory. 
This approach essentially treats the whole network of GPUs as a loosely unified 
memory pool. The latency of remote access is higher (network latency in tens to 
hundreds of microseconds) and bandwidth can vary (e.g. 100 Gbps Ethernet ~ 12.5 
GB/s max, often lower in practice), so this tier is even slower than a local NVMe in 
many cases. Therefore, Trickums uses Tier-4 sparingly and with predictive 
prefetching (as discussed later with Hellhound). Still, in scenarios like a 
decentralized inference network, a low-memory device could tap into a beefier 
neighbor’s VRAM to hold model segments it can’t fit, rather than hitting disk – this 
can be beneficial if the network is fast or the data is reused often. (Where available, 
NVIDIA’s GPUDirect RDMA can be utilized: it exposes GPU memory for direct 
network DMA, so a NIC can send/receive data to GPU memory without CPU 
involvement[11].) 

https://en.wikipedia.org/wiki/RCUDA#:%7E:text=rCUDA%2C%20which%20stands%20for%20Remote,less%20energy%2C%20acquisition%2C%20and%20maintenance
https://en.wikipedia.org/wiki/RCUDA#:%7E:text=The%20recommended%20distributed%20acceleration%20architecture,accelerated%20applications%20can%20concurrently
https://wolfadvancedtechnology.com/role-of-gpudirect-rdma-roce-in-optimized-paths/#:%7E:text=Paths%20wolfadvancedtechnology,transaction%20is%20carried%20over


 
Figure: Tiered memory architecture of Trickums virtualization layer. The local node’s GPU 
(Tier-1 VRAM) is backed by system RAM (Tier-2 pinned memory) over PCIe/NVLink, and 
further by an NVMe SSD (Tier-3 disk swap). Optionally, a remote node’s memory (Tier-4: 
RAM or VRAM of peers via VAIPU network) can serve as additional backing. Solid arrows 
indicate primary data paths; dashed arrows indicate optional direct paths (e.g., GPU-direct 
storage or network RDMA). 

Each tier has different performance characteristics, and Trickums manages them to 
present a seamless memory space. In summary, Tier-1 is the fastest (on the order of 
hundreds of GB/s, sub-microsecond latency), Tier-2 is next (tens of GB/s, microsecond 
latency but often ~10× slower than Tier-1 access[3]), Tier-3 is slower (a few GB/s 
sequential, but milliseconds of latency if random access), and Tier-4 can vary widely (from 
GB/s scale on good networks to much less on poorer links, with latencies impacted by 
network hops). By structuring memory into these tiers, Trickums behaves like a skilled 
quartermaster, shuffling resources so that the GPU is always working with the hottest data 
in VRAM, while infrequently used data is stashed further away. The metaphorical 
“deception” is that CUDA and PyTorch only see a large pool of memory – Trickums ensures 
that whichever portion they touch is promptly fetched to VRAM, evicting something else if 
necessary, just as a conjurer might swap objects in and out of a hat. 

Implementation Strategies and Memory Management 
Implementing Trickums’ VRAM illusion requires a blend of low-level system hooks, 
memory management algorithms, and careful orchestration with the GPU runtime. This is 
both a software shim and a runtime service: Trickums sits between the application (or ML 
framework) and the actual CUDA driver, intercepting memory API calls and managing data 
movement. Below we delve into key aspects of the implementation – from intercepting 
allocations to paging policies and integration with PyTorch – all while maintaining 
performance and correctness. 

Intercepting CUDA Allocations and Deallocations 

The first challenge is transparency: existing GPU-accelerated programs (like PyTorch 
models) expect to allocate GPU memory (e.g. via cudaMalloc or PyTorch’s 
at::cuda::malloc) and use it normally. Trickums provides a C/C++ shim layer that 
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intercepts these calls. On Linux, this can be done by interposing the CUDA runtime API 
calls (using a preload library that wraps cudaMalloc, cudaFree, etc.), or by leveraging 
custom allocators in the framework. PyTorch, for example, has a modular caching 
allocator for CUDA – Trickums can integrate by replacing that allocator with one aware of 
the multiple tiers. When an allocation request comes in (say for N bytes): 

• If there is sufficient free VRAM (Tier-1) available, Trickums may fulfill it directly on 
VRAM (calling the real cudaMalloc) and register this block as primarily resident in 
Tier-1. This might be done for relatively small allocations or ones that are latency-
sensitive. However, if we blindly allocate everything in VRAM, we’d soon exhaust it 
with large models – Trickums’ value is in oversubscribing beyond VRAM. So more 
often: 

• For large allocations or when VRAM is near capacity, Trickums will create a 
virtual allocation. It reserves a range of “virtual GPU address space” equal to N 
bytes, but only part of it (or none of it initially) is backed by actual VRAM. Under the 
hood, one strategy is to use CUDA’s Unified Memory (cudaMallocManaged) to get a 
unified virtual pointer that the GPU can access[12][4]. This pointer can represent 
memory that might reside on host or device as needed. Trickums can then control 
placement using calls like cudaMemAdvise and cudaMemPrefetchAsync (or their 
equivalents) to prefer certain pages in VRAM or to prefetch them when appropriate. 
Alternatively, Trickums could allocate memory in system RAM (pinned) via 
cudaHostAlloc (giving a CPU pointer accessible to GPU) and treat that as backing 
store for the virtual pointer. In either case, the GPU program receives a pointer that 
it believes is device memory – but Trickums ensures that when the GPU actually 
uses it, the data will be fetched to VRAM. 

• Trickums maintains a metadata structure for each allocation: essentially a page 
table or mapping of the virtual memory range to its current physical location (which 
tier, and if in VRAM, at what address). For example, a 1 GB allocation might be 
divided into, say, 256 pages of 4 MB each (the page size can be tunable – larger 
chunks like 2MB or 4MB are common to amortize overhead). Initially, perhaps only a 
few of those pages are actually loaded in VRAM (whichever the application is likely 
to access first), the rest might sit in host RAM or on disk. This is similar to how an OS 
lazily commits pages for a process. Trickums might mark the pages as “not 
resident” on GPU and rely on the first access to trigger a migration. 

• Freeing memory (cudaFree interception) is handled by reversing the process: 
Trickums will free any physical VRAM pages associated with that allocation 
(returning them to the VRAM pool), free any pinned host memory or disk space 
used, and update its maps. It must coordinate with the actual CUDA driver to free 
device allocations if any. If unified memory was used, cudaFree on the unified 
pointer would release the whole backing (so Trickums might avoid directly using 
unified mem for the entire allocation if it wants finer control; instead it could 
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manage separate pools for each tier). In practice, a hybrid approach is likely: 
Trickums could use small fixed VRAM pools and manage migrations itself. 

Concisely, Trickums’ allocator ensures that no cudaMalloc ever truly fails due to OOM. If 
VRAM is exhausted, it will either satisfy the request with a pointer to pinned RAM (and later 
swap as needed) or succeed with unified memory. This deceives the application into 
thinking “yes, I got the GPU memory I asked for,” when in reality the data might initially live 
in slower memory and only parts will reside in VRAM on demand. 

Pseudocode Example – Intercepted Allocation: Below is a simplified pseudocode 
illustrating how Trickums might handle an allocation request. (This is a conceptual outline; 
actual implementation would be more complex with error handling and asynchronous 
behavior.) 

void* TrickumsMalloc(size_t bytes) { 
    if (bytes < SMALL_THRESH && vram_free_bytes() >= bytes) { 
        // Use direct VRAM for small allocations 
        void* devPtr; 
        cudaMalloc(&devPtr, bytes); 
        register_allocation(devPtr, bytes, Tier::VRAM); 
        return devPtr; 
    } 
    // Large allocation or low VRAM: create virtual allocation 
    size_t pageSize = CHOSEN_PAGE_SIZE; 
    size_t numPages = (bytes + pageSize - 1) / pageSize; 
    // Allocate backing storage in host for all pages (could be pinned or 
unified) 
    void* hostMem = cudaHostAllocPinned(bytes); 
    void* basePtr; 
    cudaHostGetDevicePointer(&basePtr, hostMem, 0); // get GPU-accessible 
pointer 
    // Initialize metadata for each page 
    AllocationMeta* meta = new AllocationMeta(basePtr, bytes, pageSize); 
    for (int p = 0; p < numPages; ++p) { 
        meta->pages[p].location = Location::HOST_RAM; 
        meta->pages[p].hostPtr = (char*)hostMem + p*pageSize; 
        meta->pages[p].devPtr  = (char*)basePtr  + p*pageSize; 
        meta->pages[p].inVRAM  = false; 
    } 
    register_allocation_meta(basePtr, meta); 
    return basePtr; 
} 

In this sketch, cudaHostAllocPinned is used to get pinned CPU memory (and 
cudaHostGetDevicePointer gives a device-visible pointer to it). The returned basePtr is a 
pointer the application will treat as a GPU memory address. All pages are initially marked 
as in Host RAM. As the application starts to use this memory (e.g., a GPU kernel reads from 
it), CUDA will generate page faults on those addresses since they are not in VRAM. 



Trickums (in concert with CUDA’s UVM or via its own fault handler thread if applicable) will 
catch these events and then allocate VRAM pages and copy data over. 

Memory Paging, Eviction Policies, and Page Migration 

The heart of Trickums’ illusion lies in paging – dynamically moving chunks of memory 
between tiers. This is analogous to an OS swapping pages to/from disk, but here we juggle 
between VRAM and other storage. The key components are: 

• Page Fault Handler / Migrator: When the GPU tries to access an address that is not 
currently in VRAM, a page fault occurs (if using unified memory, this fault is handled 
by the NVIDIA driver’s UVM subsystem by default[4]). Trickums either hooks into 
this mechanism or uses it to get notified. Upon a page fault for a given page: 

• Trickums determines the page’s current location (from metadata). Say it’s in host 
RAM or disk. 

• It must allocate a free slot in VRAM to bring this page in. If VRAM is full, something 
must be evicted (see next bullet). 

• If the page’s content is in host RAM, a DMA transfer (via cudaMemcpyAsync or UVM 
migration) is initiated to copy it to the GPU memory slot. If it’s on disk, Trickums first 
reads it into a pinned RAM buffer (possibly batching multiple pages), then issues a 
DMA to GPU. The GPU thread that caused the fault will be stalled until the data 
arrives (this stall is within the CUDA driver, which may schedule other warps in the 
meantime, but effectively the kernel experiences a latency hit). Overlap of 
computation and data transfer can be achieved if there are multiple streams or 
using prefetching (discussed later). 

• Once the page is in VRAM, the page table (metadata) is updated: the page is now 
marked as resident in Tier-1 at a certain GPU memory address. The GPU can now 
resume accessing it. 

• Eviction Policy (Choosing Victim Pages): When VRAM has no free space to 
accommodate a needed page, Trickums must evict one or more pages from VRAM 
back to a lower tier. This is done to free up space for the new page. A Least 
Recently Used (LRU) strategy is a natural choice – evict the page that hasn’t been 
accessed for the longest time, on the assumption it’s least likely to be needed soon. 
In fact, NVIDIA’s UVM by default uses an LRU-like eviction policy for 
oversubscription. However, LRU isn’t always optimal; studies have shown LRU can 
mistakenly evict “hot” pages in irregular access patterns[13], causing thrashing. 
Trickums could improve on this by tracking access patterns or allowing certain 
pages to be “pinned” in VRAM if they are critical (for example, pages containing 
frequently used model parameters). For now, assume an LRU queue: every time a 
page is accessed in VRAM, we mark its timestamp or move it to the back of an LRU 
list. On needing an eviction, the page at the front (least recently used) is chosen. 
Before eviction, if the page is dirty (modified on GPU since last loaded), we must 
copy it back to host RAM or disk to preserve changes. If it’s read-only data (like 
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weights in inference), we might not need to write it back if a copy already exists in 
lower tier. Trickums uses knowledge of the data: model weights can often be 
treated as read-only, so evicting them might not require write-back (just discard 
from VRAM, knowing they are still on disk). Activation buffers or training gradients 
would be written back if evicted. After eviction, that VRAM space is freed (or 
immediately reused for the incoming page). 

• Prefetching and Overlap: While pure on-demand paging works, it can stall GPU 
threads frequently if many faults occur. Trickums therefore implements 
prefetching strategies. For example, if the GPU accesses page N, perhaps N+1 is 
likely next (if memory access is sequential). Unified Memory in CUDA actually has a 
built-in heuristic “neighbor page prefetcher” that tries to fetch the next pages upon 
a fault[14][15] (NVIDIA introduced a tree-based prefetch in CUDA 8 to cluster pages 
and reduce fault latency). Trickums can do similarly or better: when Hellhound (the 
scheduler daemon) provides hints (e.g., “layer 2 weights will be needed soon”), 
Trickums can asynchronously start loading those into VRAM or at least into host 
RAM from disk, overlapping with current computation. The goal is to hide latency by 
pulling in pages before the GPU actually demands them. In pseudocode, 
Trickums might have a background thread: “if free VRAM > X and there are pending 
future pages, load them”. Prefetch can also be done on disk tier: reading ahead 
sequentially to amortize disk latency and get consecutive chunks. 

• Batching and Granularity: Trickums might choose a larger page size for GPU 
transfers (e.g. 2MB or more) because copying tiny 4KB pages would be inefficient 
over PCIe (the overhead of each transfer would kill performance). By using larger 
chunks, we reduce the frequency of migrations at the cost of maybe copying slightly 
unused data at page edges. This is a trade-off similar to OS using 4KB vs 2MB 
hugepages. Additionally, Trickums could batch multiple page faults together if the 
GPU generates several around the same time. Some research suggests handling 
multiple faults in one go (NVIDIA’s UVM can group faults from many threads and 
pipeline them[16]). Trickums could opportunistically wait a microsecond to see if 
another fault comes and then fetch a bunch of pages in one transaction (though too 
much waiting would stall the GPU). 

• Eviction to Disk: When evicting from Tier-1, typically Trickums will demote a page 
to Tier-2 (RAM) if possible, as RAM is faster to reload from than disk. Only if RAM is 
also full (which it might be if oversubscribing beyond host memory capacity) will it 
push pages further out to Tier-3 disk. This effectively creates an LRU chain across 
three levels: VRAM <-> RAM <-> Disk. Pages might cascade: a page evicted from 
VRAM moves to RAM; if RAM exceeds some watermark, the oldest RAM-resident 
page is written to disk (and potentially freed from RAM). On fault, if a page is on disk, 
Trickums would load it back to RAM (or directly to VRAM if VRAM has space) – 
possibly skipping putting it in RAM if it’s immediately needed in VRAM. To manage 
disk I/O efficiently, Trickums could maintain a swap file and manage it in units (like 
operating systems do with pagefile). Alignment considerations are important here: it 
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will align file accesses to the SSD’s block boundaries (e.g., 4KB or preferably larger 
like 128KB chunks) for efficiency, and possibly use asynchronous file I/O (on 
Windows, the DirectStorage API or on Linux, io_uring with O_DIRECT, etc.) to 
overlap disk reads with GPU computation. 

The combined result of these mechanisms is that the GPU sees a large memory space, but 
when it wanders into a region not currently in VRAM, Trickums swiftly swaps the needed 
data in. Just as a skilled illusionist manages hidden compartments, Trickums ensures the 
GPU only notices a slight delay (the latency of a page swap) rather than a hard out-of-
memory error. We can visualize page movement akin to sliding puzzle pieces: keep the 
blank spot moving around to let a new piece in. 

Eviction Policy Enhancements: We mentioned LRU as a base policy, but Trickums can 
integrate smarter heuristics: - Priority Hints: Certain data (e.g., active model layers or 
frequently reused weights) can be given high priority to keep in VRAM. Trickums’ API could 
allow Hellhound or the model loader to tag some allocations as high-priority. These might 
be evicted last or only if absolutely necessary. - Proactive Eviction: Some frameworks 
proactively release GPU memory when not needed (e.g., after a layer finishes, free its 
activations). Trickums can hook into such signals to evict those pages immediately and 
free VRAM for upcoming uses. This works well for static graphs or pipelined models – e.g., 
once layer 1 is done, its weights could be evicted if needed to load layer 5, etc. - Access 
Counters: As an advanced feature, Trickums could track how many times each page is 
accessed over a window. If a page is accessed frequently (hot page), a pure LRU might still 
evict it if there’s a period of inactivity, but Trickums might identify it as “don’t evict because 
it will be needed soon again.” A hybrid of LRU and LFU (least frequently used) or even 
machine-learning-based predictors could be used. Researchers have explored using 
neural networks to predict page access patterns and improve prefetch/eviction decisions 
beyond simple LRU[17][18]. In a future version, Trickums may employ an AI-driven policy 
(discussed later under enhancements). 

Handling Fragmentation, Alignment, and Bandwidth Considerations 

Managing memory in multiple tiers presents practical challenges like fragmentation and 
alignment: 

• VRAM Fragmentation: Over time, as Trickums allocates and frees varying sizes, 
VRAM can become fragmented (holes between allocations). Unlike system 
memory, GPU memory managers cannot as easily move allocations around 
(especially if pointers are in use by the GPU). Trickums, by virtue of controlling 
allocations, can mitigate fragmentation by using a paging scheme – since everything 
is allocated in page-sized chunks, VRAM is essentially managed as a pool of equal-
sized blocks. This avoids fragmentation at the cost of internal fragmentation (the 
last few unused bytes of a page). If a large contiguous VRAM region is needed (e.g., 
for a single tensor), Trickums can allocate multiple non-contiguous pages and the 
illusion is maintained by the virtual addressing. Modern GPUs support virtual 
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addressing, so contiguous virtual memory can map to disjoint physical chunks. 
Therefore, Trickums can defragment by remapping pages rather than physically 
moving them (if an allocation can tolerate non-physical-contiguity, which most can 
thanks to GPU MMU). In rare cases where truly contiguous physical memory is 
needed (some legacy CUDA operations or certain drivers), Trickums might need to 
allocate those up front or use a compaction algorithm on evictions. 

• Pinned RAM Fragmentation: The pinned host memory used by Trickums also 
needs management. If many allocations are active, Trickums might keep a large 
pinned region (like a big pool) and sub-allocate from it, again to reduce overhead. 
Pinned memory is a limited resource (excessive pinning can reduce overall system 
performance and cannot be swapped by OS), so Trickums might unpin or free host 
memory for pages that have long since been evicted to disk and are not likely to be 
needed soon, to relieve pressure on system memory. 

• Alignment: Alignment is crucial for performance especially on the PCIe and disk 
transfers. Trickums aligns each allocated chunk to at least 4096 bytes (page size) or 
more. GPU DMA engines often operate more efficiently on 64-byte or 256-byte 
boundaries. NVMe best performance is with 4KB alignment and sizes in multiples of 
4KB. Trickums thus ensures that the virtual pages align to such boundaries. For 
instance, if a model weight tensor doesn’t naturally align, Trickums may pad it. Also, 
when using GPUDirect Storage or RDMA, some alignments are required (GPUDirect 
often requires memory addresses to be pinned and possibly 64KB aligned for peer 
access in some cases[19]). Trickums takes care of these under the hood. 

• Bandwidth Considerations: Because Tier-2 and Tier-3 involve relatively slow links 
(PCIe and SSD), bandwidth can become a bottleneck if we thrash data in and out. 
Trickums employs a few strategies to handle this: 

• Coalesced transfers: As noted, page size tuning helps saturate the bandwidth by 
moving larger chunks. Trickums will try to always use the copy engine on the GPU 
(DMA) to transfer data asynchronously, allowing overlap with computation. Modern 
GPUs have multiple copy engines, so Trickums could use one for HtoD (host-to-
device) prefetches while the GPU concurrently executes kernels on other data. 

• Compression: (This will be discussed more in enhancements, but worth noting 
here too.) Compressing data before writing to disk or sending over network can 
effectively increase bandwidth at the cost of CPU/GPU cycles for 
compress/decompress. For example, if large weight matrices have lots of 
redundancy, compressing them could make transfers faster. Trickums might 
optionally compress pages evicted to Tier-3 to reduce I/O. 

• Avoiding Redundant Moves: If a page oscillates between VRAM and RAM 
repeatedly (ping-ponging), performance plummets. Trickums might detect this 
pattern and decide to keep it in VRAM (even if it means evicting something else 
more aggressively) or replicate it on multiple GPUs if that’s an issue. Also, if the 
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GPU is accessing data in a streaming fashion (use once then never again), Trickums 
can optimize by not caching it in VRAM at all – just have the GPU fetch it via zero-
copy from host (which avoids taking up VRAM and subsequent eviction). NVIDIA’s 
Unified Memory can do something like that with “access where it is” strategy on 
Power9 systems (allowing remote access without migration for infrequent 
access)[20]. Trickums could similarly decide that some pages stay in host memory 
if moving them is not worth it (especially if PCIe can handle the throughput). 

• Direct Paths: As mentioned, Trickums utilizes GPUDirect Storage (if available) to 
read from NVMe to GPU without copying via CPU. Similarly, for network, using 
RDMA (GPUDirect RDMA) to fetch data from remote memory straight into local 
VRAM cuts down on extra copy steps. These direct pipelines maximize the use of 
available bandwidth. 

In essence, Trickums acts as a virtual memory manager tuned for GPUs, juggling a 
hierarchy of memory. Its implementation draws from operating systems (paging, caching, 
eviction) but is tailored to the characteristics of GPU computing – large contiguous arrays, 
mostly read-heavy model weights, and the need to overlap communication with 
computation. 

C++ Integration with PyTorch (Shim Layer) 

To integrate with PyTorch (and similar frameworks like TensorFlow), Trickums provides a 
shim that makes the process mostly transparent to the user’s code. A typical integration 
might involve: 

• Custom Allocator: PyTorch allows custom allocators for CUDA tensors via its 
CUDACachingAllocator interface. Trickums can register itself as the allocator. Thus, 
when PyTorch does torch.cuda.tensor(...) or allocates memory for model 
parameters, it calls into TrickumsMalloc instead of the default cudaMalloc. This 
ensures all tensor storage uses Trickums-managed memory. PyTorch’s caching 
allocator normally grabs large chunks of device memory and suballocates to avoid 
calling cudaMalloc frequently; Trickums might bypass or augment this by doing its 
own caching at the host side (since it’s anyway pooling memory to manage pages). 
The goal is that PyTorch and the user don’t see any difference except perhaps some 
performance overhead when actual swapping happens. 

• Memory Reports: One tricky aspect is that PyTorch and CUDA often query available 
memory (e.g., cudaMemGetInfo) to decide how much they can allocate, or to print 
memory usage. Trickums must intercept these queries too, possibly inflating the 
reported total memory to the “virtual” size. For example, if a GPU has 8 GB physical, 
Trickums might report 16 GB available (if it knows it can utilize host memory to that 
extent). However, this must be done carefully: if we report too large and the 
program tries to use it fully, performance will degrade significantly due to swapping. 
Perhaps Trickums reports a moderate multiple of actual VRAM or some number 
based on configured policy. In any case, lying to cudaMemGetInfo is part of the 
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illusion – making the framework think more VRAM exists. (This addresses 
frameworks that try to load as much model as fits; now they might load more, 
relying on Trickums to manage it.) 

• PyTorch Autograd and Streams: PyTorch uses CUDA streams and events for async 
execution. Trickums must ensure that page transfers (HtoD or DtoH) are properly 
synchronized with these. For instance, if PyTorch launches a kernel that will use 
some data, Trickums should ideally have already prefetched that data into VRAM 
before the kernel runs. If not, the unified memory page faults will stall the kernel 
implicitly. Trickums could hook at an even higher level – for example, the model 
execution graph – with Hellhound’s help to schedule prefetches. Alternatively, 
Trickums might use cudaStreamAttachMemAsync or prefetch calls on specific 
streams to bring in pages at the right time. This requires careful coordination: if 
PyTorch records an op that will use tensor T on stream S, Trickums could record a 
prefetch of T’s pages into VRAM on stream S, so that the data movement happens 
before the compute on that stream, possibly overlapping with other streams. 

• C/C++ APIs: For lower-level usage, Trickums might expose its own API for 
developers. For example, a function to pin a tensor in VRAM (to exclude it from 
eviction), or to manually prefetch a tensor. However, in a typical deployment as a 
daemon/allocator, these might not be needed by end-users – the system “just 
works” by intercepting standard calls. 

• Daemon & Coordination: Trickums might run as a background daemon process 
(especially for handling disk I/O or remote communication) in addition to the 
interception library in the application process. The two can communicate (via 
shared memory or sockets) to coordinate page evictions and fetches. For instance, 
the application thread triggers faults, the Trickums library notifies the daemon 
“need page X from disk”, the daemon does the disk IO and then signals when data is 
ready, etc. This separation is not strictly necessary but can improve throughput 
(dedicated threads for I/O and network). 

All these implementation measures combine to allow PyTorch models to run unchanged 
on ForgeBorn nodes with Trickums. The metaphoric result: PyTorch thinks it has a 
“magically” larger GPU. Under the hood, Trickums and Hellhound are furiously shuttling 
pieces of the model in and out of the GPU like a team of hidden blacksmith’s apprentices, 
ensuring that when the smith (GPU) reaches for a tool (data), it’s there, even if moments 
before it was in the shed. 

Comparison to Related Technologies 
Trickums’ approach to GPU memory virtualization can be better understood by comparing 
it with existing technologies and techniques aimed at addressing GPU memory limits: 

• NVIDIA Unified Memory (UVM): Unified Memory allows a programmer to allocate a 
memory buffer that is automatically managed between CPU and GPU by the CUDA 



driver. It implements on-demand page migration and eviction between GPU VRAM 
and CPU RAM[4]. In concept, this is very similar to Trickums’ Tier-1 and Tier-2 
management. However, UVM is limited by the size of system memory – each unified 
allocation is backed by pinned host memory equal to its size, which effectively 
means it “cannot go beyond host memory due to page pinning”[8]. Trickums 
extends beyond this by adding Tier-3 disk swap, thereby handling oversubscription 
even when GPU + RAM is not enough. Another difference is control and 
optimization: UVM’s policies are mostly automatic and generic, whereas Trickums 
can incorporate domain-specific hints (from Hellhound) and custom eviction 
strategies. For example, UVM might fault pages in purely reactively and evict via 
LRU, whereas Trickums can proactively prefetch model layers and, say, avoid 
evicting critical pages (or use knowledge that certain memory is read-only, etc.). In 
essence, UVM is a general facility (great for ease of programming), but developers 
have found that automated heuristics can sometimes be suboptimal[21]. Trickums 
takes a more active role: it’s like a managed UVM with multi-tier backing and 
integration with the application’s semantics. It’s also worth noting Unified Memory 
incurs overhead on each page fault (GPU context switches to service faults), which 
can dramatically slow down kernels if many faults occur[22]. Trickums tries to 
mitigate that with bigger transfers and prefetch. One can think of Trickums as “UVM 
on steroids” – combining hardware page fault support with software-guided policies 
and extending the concept to disk and network. 

• AMD Smart Access Memory (Resizable BAR): Smart Access Memory (SAM) is a 
feature that allows the CPU to directly address the entire VRAM of the GPU (enabled 
by the PCIe Resizable BAR capability)[23]. Traditionally, CPUs could only map a 256 
MB window of GPU memory at a time; SAM removes that limit, letting the CPU 
read/write all GPU memory. This is essentially a widening of the aperture between 
CPU and GPU. While not directly about oversubscribing GPU memory, it does relate 
to unified access. With SAM, the CPU can efficiently stream data to/from VRAM 
without the overhead of small window management. Trickums can benefit from 
this: for instance, if SAM is enabled, Trickums writing to the GPU’s memory from a 
CPU thread (for prefetch or eviction) can potentially be faster or simpler (no need 
for many cudaMemcpy calls; it could just write into mapped VRAM addresses). But in 
the bigger picture, SAM does not increase GPU memory size; it just gives the CPU 
a broader view. If anything, SAM is more analogous to the inverse of Trickums Tier-2: 
SAM makes VRAM more accessible to CPU, whereas Trickums makes system 
memory (and beyond) more accessible to GPU. Both unify the address space in 
different directions. In terms of performance, SAM can improve data transfer rates 
in some cases (by avoiding some copy overhead)[24][25], but it doesn’t implement 
any paging or eviction. So, Trickums is complementary – one could use SAM in 
conjunction so that CPU involvement in Trickums memory moves is minimized. 

• Remote CUDA (rCUDA): rCUDA is a middleware that allows an application to use a 
GPU over the network as if it were local[9]. It intercepts CUDA calls and forwards 
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them to a remote server that has a GPU, then results are sent back. The primary 
use-case is a cluster where not every node has a GPU; a node can “borrow” a GPU 
from a neighbor. At a high level, Trickums’ optional Tier-4 (remote memory) has a 
similar flavor – it uses network to extend resources. However, rCUDA is about 
remote computation (the kernel actually runs on the remote GPU and data is 
shipped back and forth), whereas Trickums’ remote memory means the local GPU 
still does the computation, but may fetch some data from a peer. In rCUDA, if a 
node without a GPU calls cudaMalloc, it’s actually allocating on a remote GPU and 
all subsequent cudaMemcpy, kernel launches etc., go through the network[10]. In 
Trickums, when we use remote Tier-4, it might be that cudaMalloc was local 
(Trickums gave a local pointer), but behind the scenes Trickums might store the 
content on a remote node until needed. One could imagine a hybrid: if the remote 
node also has a GPU, maybe it could even compute on the data instead of shipping 
it – but that enters the realm of distributed computing rather than pure memory 
extension. Performance: rCUDA can be surprisingly efficient on fast networks, but 
it introduces latency on every API call. Trickums aims to keep most execution local 
to avoid that latency except when swapping large chunks. Another related tech is 
NVidia’s upcoming GPU Partitioning/Pooling (which can aggregate multiple GPU 
memory spaces via NVLink or NVSwitch in a single system). That’s more specialized 
hardware support. Trickums is a software solution that works in more generic 
settings, albeit with the cost of PCIe/NVMe/Network overhead. 

• NVIDIA GPUDirect (RDMA and Storage): These are low-level optimizations rather 
than memory management on their own. GPUDirect RDMA allows third-party 
devices (like NICs) to directly read/write GPU memory. GPUDirect Storage (GDS) 
enables GPUs to perform DMA to storage or through an NVMe controller to GPU 
memory without bouncing through CPU memory[6]. Trickums doesn’t compete with 
these; it leverages them. For example, with GPUDirect Storage, Trickums can issue 
a read from the swap file such that the data goes straight into a staging buffer in 
VRAM. Without GDS, the data path would be: SSD -> CPU RAM -> copy to VRAM, 
which uses extra bandwidth on the CPU side. With GDS: SSD -> VRAM directly 
(perhaps via the NVMe DMA engine). This reduces latency and CPU overhead 
significantly[26]. Similarly, for remote, using GPUDirect RDMA means the NIC can 
inject data into VRAM directly. If Trickums is running on hardware and drivers that 
support these features, it can optimize accordingly. Unified Memory in newer CUDA 
also can utilize some of these under the hood (e.g., UM on NVLink or NVSwitch can 
directly access other GPU memory). The main point: GPUDirect is about efficient 
data movement, whereas Trickums is about deciding what data to move when. 
They complement each other in achieving the overall goal. 

• AMD ROCm Unified Memory / HMM: AMD’s ROCm has a unified memory concept 
using Linux Heterogeneous Memory Management (HMM) which is similar to 
NVIDIA’s. It allows page migration and CPU-GPU coherent memory on AMD GPUs 
(especially MI200 Instinct GPUs)[27][28]. The differences mirror NVIDIA’s case: 
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AMD’s unified memory won’t inherently use disk or remote, it’s within a single 
node’s CPU+GPU memory. AMD’s SmartAccess (discussed above) and features 
like large BAR make certain operations faster but do not provide oversubscription 
beyond host memory either. Trickums could in theory work on AMD GPUs as well, 
using their APIs to pin memory and handle page faults (if accessible via HMM 
events). The concept stays the same. 

In summary, what sets Trickums apart is its holistic approach: it combines ideas of 
unified memory, caching, and distributed memory into one system explicitly designed for 
AI workloads on a decentralized network. Where each related technology addresses a 
piece (automatic memory oversubscription, or remote GPU use, or faster I/O), Trickums 
integrates them with a guiding narrative – it is aware of the AI model structure (through 
Hellhound) and network topology, and it prioritizes usage patterns accordingly. The 
metaphoric difference: others are tools or features (like a single enchantment), while 
Trickums is an entire spellbook orchestrating an illusion – from small sleights of hand (like 
prefetching pages) to grand tricks (swapping across the network). 

Integration with ForgeBorn Daemons (Hellhound & Trickums 
Collaboration) 
Within the ForgeBorn architecture, Trickums does not operate in isolation; it works in 
concert with other daemons to maximize efficiency. Hellhound is another core daemon in 
ForgeBorn (described in the Genesis scroll) – conceptually, Hellhound could be the 
orchestration demon that manages task scheduling, model partitioning (“sharding”), and 
workload prediction. The cooperation between Hellhound and Trickums can be imagined 
as between a strategist and a quartermaster: Hellhound decides what parts of the model 
will be needed and when, while Trickums figures out where to fetch them from and how to 
store them. 

Here are specific ways Hellhound and Trickums integrate: 

• Model Shard Management: ForgeBorn likely breaks large AI models into “shards” 
(e.g., different layers or blocks of a neural network, or different attention heads, 
etc.) which can be distributed across nodes or loaded/unloaded dynamically. 
Hellhound might be responsible for this partitioning – for example, deciding that 
Node A will handle layers 1-5 of a model and Node B will handle 6-10, or even within 
one node, deciding which chunks of the model to keep in memory at a time. 
Trickums provides the memory substrate to back this. Hellhound, knowing the 
model’s execution order, can inform Trickums ahead of time: “After the current 
layer, the next shard needed will be X (currently on disk or on a peer); prepare it.” 
This is essentially predictive prefetching at the high level. Instead of waiting for a 
page fault, Trickums can proactively pull in entire shards (several pages worth) 
when cued. Hellhound could communicate with Trickums via an API or shared 
memory signals, enumerating which model parts (e.g., weight matrices, activations) 
will be required in the next timestep or for the next request. 



• Prefetch Daemon: Hellhound might run as a background thread (or separate 
process) monitoring the incoming inference requests or training steps. For instance, 
consider an LLM (large language model) being served: Hellhound sees the 
sequence of layers that will run for each token. As token generation proceeds, it can 
always ensure the next layer’s weights are prefetched into VRAM (or at least into 
host memory ready to DMA) by the time the current layer finishes. Trickums exports 
functions like prefetch_to_gpu(void* ptr, size_t bytes) which Hellhound can 
invoke to stage data. This way, ideally, when the compute engine (the GPU) is ready 
to consume layer N+1, the data is already in Tier-1 or Tier-2, avoiding a stall. This 
tight coupling could drastically reduce the overhead of virtual memory. It’s 
essentially overlapping model loading with computation – a form of pipeline. 

• Hinting Evictions: Hellhound’s global view also helps decide what can be evicted. 
For example, if an entire model’s forward pass is done, the activations from layer 1 
won’t be needed until possibly backprop (in training) or never again (in inference). 
Hellhound can mark those as evictable. Trickums can then eagerly evict or at least 
mark them low priority. Another scenario: if Hellhound decides to reroute a certain 
model shard to a different node (for load balancing), it can inform Trickums that 
“shard Y can be dropped from local memory after this batch, we won’t use it again 
soon.” Trickums can then free up VRAM for other things sooner. 

• Remote Coordination (VAIPU net): When using Tier-4 remote memory, Hellhound 
likely plays a role in negotiating that. Perhaps Hellhound on Node A communicates 
with Hellhound on Node B (or a central coordinator) to request memory space. For 
instance, Node A might say, “I’m low on local RAM, can someone hold shard Z for 
me?” Node B might volunteer and Hellhound sets up a channel. Trickums then will 
know that shard Z’s home is Node B and will pull it via RDMA when needed. 
Hellhound could also decide to instead move computation to Node B (if Node A is 
too constrained), which is an alternate approach (moving compute to data rather 
than data to compute). The design likely emphasizes decentralization: so perhaps 
the preference is to move data since each node might be doing part of the work. The 
interplay is dynamic and could even be market-based (if ForgeBorn has an 
economic aspect, maybe nodes “rent” memory to each other). 

• Synchronization and Consistency: With Hellhound guiding high-level decisions, 
Trickums must ensure consistency of data. If multiple nodes might cache the same 
shard, and if that shard updates (e.g., training scenario where weights change), 
Hellhound would be responsible for invalidating old copies or updating them. 
Trickums could include validation checks (like version numbers on pages) so that 
stale data isn’t accidentally used. For inference (read-only weights), consistency is 
simpler – replication is fine as long as everyone has the same copy. 

In narrative terms, Hellhound could be depicted as a fiery hound that runs ahead on the 
path, scouting what lies before the forge’s warriors, while Trickums is the trickster forging 
illusions so the army (the GPUs) always find the weapons (data) they need at hand. The 



cooperation ensures that even if an individual node’s memory is limited, the network as a 
whole can bear the load: Hellhound coordinates, Trickums delivers. This forms the basis of 
ForgeBorn’s decentralized AI compute – by dividing and conquering memory demands 
among many collaborators, they achieve what a single GPU couldn’t. 

A concrete example: Suppose ForgeBorn is serving a massive 70B-parameter language 
model across several 8GB GPUs. Hellhound might assign each GPU a certain subset of 
layers primarily. When a request comes in, each GPU will handle its layers and then pass 
intermediate results. But even within each GPU, 8GB might not hold all its assigned layers 
at once. So Hellhound instructs Trickums to load layers 1 and 2 first. GPU runs them, then 
while GPU is working on layer 2, Hellhound tells Trickums to start loading layer 3 (which 
was on disk or another node). By the time GPU needs layer 3, Trickums has it in VRAM (or at 
least in RAM ready to go). Meanwhile, layer 1’s weights can be evicted to free space. And 
so on. The Hellhound-Trickums duo essentially perform layer-by-layer streaming, making 
sure the GPU is busy computing rather than idly waiting on data. This kind of synergy 
between scheduling (Hellhound) and memory virtualization (Trickums) is what allows 
ForgeBorn to “operate across low-memory GPUs” effectively. 

Pseudocode and System Design of the Trickums Runtime 
To illustrate the design at a lower level, here we present a more cohesive pseudocode 
outline of Trickums’ runtime components. This is a conceptual design merging the ideas 
discussed: 

// Data structures (simplified) 
struct PageInfo { 
    void* hostPtr; 
    bool  inVram; 
    size_t vramOffset; 
    bool  dirty; 
    Timestamp lastAccess; 
}; 
struct AllocationMeta { 
    void* basePtr; 
    size_t totalBytes; 
    size_t pageSize; 
    std::vector<PageInfo> pages; 
}; 
 
// Global state 
VramManager vram;    // manages VRAM blocks (bitmap of free 4MB chunks, etc.) 
DiskSwapManager disk; // manages swap file offsets 
LRUList<PageInfo*> lruList; // global LRU for pages in VRAM 
std::map<void*, AllocationMeta*> allocMap; // maps basePtr to meta 
 
// Fault Handler (invoked when GPU page fault occurs or on manual prefetch 
request) 
void handlePageFault(void* pagePtr) { 



    AllocationMeta* meta = findAllocForPtr(pagePtr); 
    size_t pageIndex = ( (char*)pagePtr - (char*)meta->basePtr ) / meta-
>pageSize; 
    PageInfo &page = meta->pages[pageIndex]; 
    std::lock_guard<std::mutex> lock(meta->mutex); 
    if (page.inVram) { 
        // Already in VRAM (maybe another thread handled it first) 
        return; 
    } 
    // Need to bring page into VRAM 
    // Step 1: Find free VRAM slot, evict if necessary 
    size_t freeSlot = vram.findFreeChunk(); 
    if (freeSlot == NO_FREE) { 
        PageInfo* evictPage = lruList.ejectLRU(); 
        evictPageFromVram(evictPage); 
        freeSlot = evictPage->vramOffset; 
    } 
    // Step 2: Load data into that slot 
    if (pageIsOnDisk(page)) { 
        disk.read(page, tempHostBuffer);  // read page from disk to 
tempHostBuffer 
        cudaMemcpyAsync(VRAM_ADDR(freeSlot), tempHostBuffer, meta->pageSize, 
HtoD); 
    } else { 
        // page is in host RAM (pinned), can DMA directly 
        cudaMemcpyAsync(VRAM_ADDR(freeSlot), page.hostPtr, meta->pageSize, 
HtoD); 
    } 
    cudaStreamSynchronize(0); // wait for copy to complete (or use events) 
    // Step 3: Update metadata 
    page.inVram = true; 
    page.vramOffset = freeSlot; 
    page.dirty = false; // assume loaded data is up-to-date (weights or zero-
inited) 
    page.lastAccess = now(); 
    lruList.insert(&page); 
} 
 
// Evict a page from VRAM to host or disk 
void evictPageFromVram(PageInfo* page) { 
    // Called when needing to free a VRAM slot 
    if (page->dirty) { 
        // Write back to host or disk 
        if (hostMemoryAvailable()) { 
            // move to host pinned memory 
            cudaMemcpyAsync(page->hostPtr, VRAM_ADDR(page->vramOffset), 
PAGE_SIZE, DtoH); 
            // (if host is full, we might directly write to disk from VRAM if 
possible) 
        } else { 



            // host RAM full, write to disk 
            void* swapBuf = getTempBuffer();  
            cudaMemcpy(swapBuf, VRAM_ADDR(page->vramOffset), PAGE_SIZE, 
DtoH); 
            disk.write(page, swapBuf); 
        } 
    } 
    page->inVram = false; 
    // Free VRAM chunk 
    vram.freeChunk(page->vramOffset); 
    // Remove from LRU list, etc. 
} 

This pseudocode is highly simplified (synchronous, no error handling, single stream 
assumption), but it captures the essence: - handlePageFault finds which page is needed, 
ensures a VRAM slot by possibly evicting something else (using LRU), then loads the page 
from wherever it is (RAM or disk) into VRAM, and updates metadata. In practice this would 
be triggered by an actual page fault signal from CUDA or by a prefetch call. - 
evictPageFromVram handles writing a page back out if needed and marking it not in VRAM. 
Note that if the page wasn’t modified (dirty==false), and if it’s just weights from disk, we 
could skip writing back – we could just drop it knowing we have a copy on disk. The code 
above is conservative (always writes back if dirty flag set). 

The Trickums runtime would have multiple threads: one could be an asynchronous pager 
(servicing page faults or prefetch requests), one could handle disk I/O completion, etc., to 
avoid stalling the main thread. Modern OS integration (like using the Linux uffd userfaultfd 
mechanism or Windows’ equivalent) could allow user-space handling of page faults; 
NVIDIA’s driver doesn’t expose page faults directly to user, but unified memory does 
behind the scenes. If Trickums is built in user space, it might rely on UVM to trigger data 
movement and just guide it. If built as a kernel module or driver layer, it could intercept at a 
lower level. 

Security and Correctness Checks: The pseudocode above omits them, but Trickums 
must ensure: - Memory bounds are respected (no reading beyond allocated regions – likely 
handled by hardware page protections). - GPU kernels do not read uninitialized data – 
Trickums might zero-fill pages on first allocation if needed (just like an OS zeroes pages for 
security). - Data in transit to remote nodes might need encryption for security if going over 
untrusted networks (ForgeBorn being decentralized implies possibly untrusted peers). 
Trickums could integrate encryption/decryption for any sensitive data leaving the local 
node, to prevent snooping. This adds overhead but can be offloaded (maybe via GPU 
encryption engines or using NIC offload). - If a remote node fails or disconnects while 
holding some memory pages, Trickums/Hellhound need contingency: perhaps replication 
of critical data on more than one node, or quickly recompute/replace missing data from 
disk if possible. For example, if a remote memory tier was being used as cache for disk 
data, losing it means you can fallback to local disk copy. - Validation of data integrity: using 
checksums for pages on disk or received from network ensures correctness. Trickums 



might store a hash for each page on disk such that when reading back, it can detect 
corruption (rare but possible in case of disk error). Similarly, network packets could be 
corrupted; CRC at lower layers helps, but end-to-end checksum could too. - Deadlock 
avoidance: If Trickums requires GPU to copy something but GPU is busy waiting on 
Trickums (like if all copy engines are tied up), careful ordering and using separate streams 
is needed. The design ensures that a page fault handling uses a separate CUDA stream for 
HtoD copy that can execute even if default stream has a running kernel (because 
otherwise you’d have a catch-22: kernel waiting for data, but data copy queued behind that 
kernel on same stream). So Trickums uses either the dedicated copy stream or leverages 
the UVM’s ability to page in concurrently. 

All these details make Trickums a fairly complex system, almost an OS within an OS for 
GPU memory. A rigorous testing and validation phase is needed – injecting known access 
patterns and ensuring data output matches a baseline (to catch any scenario where 
Trickums might, say, accidentally drop a needed page or not load something in time 
causing incorrect results or crashes). 

Security, Correctness, and Validation 
Operating at such a low level with memory, Trickums must maintain strict correctness and 
consider security in a decentralized environment: 

• Memory Safety: Trickums never exposes memory belonging to one process/node 
to another unauthorized process. In a multi-tenant scenario, each client’s 
allocations are tracked separately. Even though Trickums intercepts calls globally, 
it tags allocations by which client or model they belong to, and isolates their 
address spaces. This is akin to an OS having separate page tables per process. In 
ForgeBorn, if multiple models or users share a GPU, Trickums ensures one user’s 
data swapped to disk is encrypted or at least not accessible by another user. On a 
single user scenario, it ensures pointers are valid – any access outside allocated 
ranges should ideally trigger a fault and be handled gracefully (or be caught and 
reported). 

• Data Encryption: As mentioned, Tier-4 remote memory usage raises trust issues: 
you might not fully trust a peer to hold your model weights (they might copy them). 
For economic inclusivity, maybe models are community property, but if not, 
Trickums could integrate encryption for pages before sending to a remote cache. 
The remote node then just stores cipher text and returns it; the local node would 
decrypt upon retrieval. This could use symmetric encryption with keys managed by 
the owner. There’s a performance cost, but for highly sensitive data it may be worth 
it. Alternatively, secret-sharing the model shards or splitting across peers so no 
single peer has a usable piece of the model could be an approach (beyond Trickums 
scope, perhaps Hellhound level trust management). 



• Validation & Checksums: To ensure no data corruption, Trickums can maintain a 
checksum for each page’s content (particularly for disk pages). When writing to 
disk, store a hash; on reading back, recompute and verify. This catches disk errors 
or stray writes. In network transfers, built-in CRC and our own end-to-end hash can 
ensure data integrity across the wire. It’s important because a single bit flip in a 
model weight could cause weird issues in inference; better to detect and maybe re-
send the data. 

• Resource Limits and DoS: Trickums should enforce quotas so that a single user 
doesn’t consume infinite disk space or memory beyond intended. It likely has 
configurable limits for how much disk swap to use, how much remote memory to 
borrow, etc. If multiple processes use Trickums, it should prevent thrashing the 
system into the ground (for example, two heavy oversubscribers could continuously 
swap and saturate the disk, making everything slow). Hellhound, as a scheduler, 
can also mitigate by not over-committing memory beyond what Trickums can 
handle with some baseline performance. 

• Correctness in Eviction Logic: The algorithm must avoid evicting something that is 
currently in use. Trickums uses reference counting or pin counting for pages: e.g., if 
a kernel is actively using page X (we can know if a page was faulted in and the kernel 
hasn’t finished), we mark it as in-use so it’s not evicted mid-use. Typically, page 
fault handling in CUDA ensures this by design: it won’t evict a page until a kernel is 
done with it. Trickums should coordinate with such mechanisms or add its own 
locks. Also, multi-GPU cases (if one GPU could access memory of another via 
NVLink or CPU pointers) complicate it, but likely ForgeBorn uses one Trickums 
instance per GPU device. 

• Testing Approach: A robust test would involve running known workloads with 
Trickums and verifying results match non-Trickums runs. Memory torture tests 
(allocating more than VRAM and writing patterns to memory to ensure they read 
back correctly) will be part of validation. Also performance benchmarking to ensure 
that the overhead is manageable (Trickums might allow e.g. 2x model size with 50% 
slowdown; if it were 10x slowdown that might not be acceptable for some use-
cases – tuning needed). 

In the narrative: Trickums’ illusions are potent, but must be handled with care lest the 
illusion falter. Thus, there are safeguards (magical wards, if you will) to ensure the 
deception never leads to actual chaos – data lost in the ether or secrets stolen by 
eavesdroppers. 

Use Cases and Deployment Scenarios 
The Trickums system unlocks several practical scenarios in the ForgeBorn ecosystem: 

• Running Large Models on Consumer GPUs: This is the flagship use-case. For 
instance, imagine a researcher with a gaming GPU (say 6 GB VRAM) wanting to run a 



transformer model that normally requires 16 GB. With Trickums, they can load the 
model (perhaps 12 GB weights plus overhead) and Trickums will automatically 
swap parts in and out. The researcher simply runs their PyTorch code; behind the 
scenes, Trickums might be moving layers to host RAM and back. The cost is some 
slowdown due to transfers, but if the model is primarily for inference and can 
tolerate some latency, this enables access to models that were previously out of 
reach. It fosters economic inclusivity: you don’t need a $3000 GPU to participate in 
AI tasks – even a cheaper card, supplemented by your system RAM and fast SSD, 
can contribute. For example, Stable Diffusion image generation on a 4 GB card 
could generate high-res images by swapping UNet weights layer by layer, albeit a bit 
slower. Community demos have shown even without Trickums, it’s possible by 
manually offloading layers; Trickums automates and generalizes that process. 

• Inference-Only VAIPU Nodes: In a decentralized network, not all nodes will do 
training or heavy multi-GPU tasks. Some might be inference specialists – e.g., an 
edge server or a user’s desktop that only performs forward passes on models to 
serve answers. These VAIPU (Virtual AI Processing Unit) nodes might have 
minimal GPU or none at all. With Trickums, even a node with just a CPU could host 
a large model in a hybrid CPU-GPU way: perhaps the CPU holds most of the model 
in RAM and only small chunks are sent to a tiny GPU for acceleration on critical 
parts. Or if truly no GPU, Trickums might not apply (it’s GPU memory virtualization), 
but those nodes could serve as remote memory providers to others. More 
interestingly, an inference node with a small GPU can leverage remote memory 
from a neighbor: for instance, a node with a 4 GB GPU can borrow another 4 GB over 
the network from a neighbor’s idle VRAM, effectively acting like an 8 GB GPU 
logically. In practice, this could mean the difference between being able to run a 
particular model or not. Latency is critical in inference though: one has to design 
the model execution to hide the latency of fetching remote chunks (which 
Hellhound’s prefetch can help with). An inference-only node could also dedicate 
more of its resources to caching model data rather than doing backprop or such, 
which fits Trickums well. 

• Distributed Training with Swap: Training large models usually involves multi-GPU 
setups or model parallelism. Trickums could facilitate a form of model parallelism 
where each GPU gets a part of the model and swaps layers in/out when needed. 
However, training has the complication of backward pass requiring gradients and 
possibly needing the weights again. Trickums could still help by offloading optimizer 
states or gradients to CPU memory between iterations, etc. There is a known 
approach called ZeRO-Offload (in Microsoft DeepSpeed) that offloads optimizer 
memory to CPU to allow training bigger models on limited GPU memory. Trickums 
could be used to implement something like ZeRO-Offload in a general way: all those 
additional tensors (optimizer, momenta, etc.) can be kept in host memory and 
paged in when required for update step, then paged out. This would allow, for 
instance, training a model that needs 20 GB of memory on a GPU with 10 GB, by 



leveraging 16 GB of system RAM for the optimizer states and activations, at some 
performance cost. 

• Remote-Swap Setups and Memory Sharing: In a scenario where a few machines 
are connected (a small cluster or even ad-hoc between friends across the internet), 
remote-swap can shine. For example, suppose one machine has a powerful GPU 
with low VRAM (say a Tesla T4 with 16 GB) and another machine has a mid GPU with 
8 GB but lots of free RAM or a spare GPU that’s idle. The first machine could use the 
second as a “swap server” – instead of hitting its disk, it goes over 10 Gbit Ethernet 
to the second machine’s memory. If that network is fast enough (and latency ~ say 
1ms), this might beat an NVMe drive on latency (which might be 0.1ms, actually 
NVMe is quite low latency and 1ms would be slower; but multiple outstanding 
requests could hide latency). In any case, in a cluster with a fast fabric (InfiniBand, 
NVLink P2P if within a node, or PCIe peering), sharing memory can yield interesting 
possibilities: 

• A form of GPU memory pooling: some recent HPC systems allow pooling GPU 
memory via NVSwitch such that one GPU can use memory attached to another GPU 
almost as if it was local (with NVSwitch providing high bandwidth). Trickums could 
mimic that in software over network or PCIe: not as fast, but conceptually similar. 

• High availability: if one node’s disk is slow, but another node’s disk is a super-fast 
NVMe, perhaps even that could be leveraged (though at that point, just put NVMe in 
each node for local). 

A remote-swap setup might also be useful in cloud or container environments: one 
container can use memory from another physical host in the cluster – effectively 
disaggregating memory from compute. This aligns with trends in data centers to 
disaggregate resources (so you could independently scale GPU compute and memory 
capacity). Trickums could be part of that software stack enabling memory disaggregation 
for GPUs. 

• Edge Computing and IoT: In edge scenarios, you might have GPU-equipped 
devices that are memory-constrained (like a Jetson Nano with 4GB). Trickums could 
allow such a device to still run larger models by streaming data from a central 
server. For instance, an AR headset with a small GPU could run an AI model by 
fetching weights on-the-fly from a nearby edge server when needed. The trade-off is 
latency and connectivity, but if done intelligently (prefetching based on sensor 
context – e.g., the AR app guesses which AI tasks or model parts will be needed 
next), it can work. This is an advanced use-case but shows the possibility of 
Trickums enabling compute anywhere – you are not barred from running 
something just because of memory, as long as you have some form of storage or 
network. 

In all these scenarios, performance will vary. Trickums is not a magic that makes an 8GB 
card as fast as a 16GB card with a heavy model – there will be slowdowns due to data 



transfer. However, the key is that it makes it possible at all, and often the slowdowns can 
be mitigated by overlap and smart scheduling. For instance, if an inference pipeline is well-
optimized, maybe running a 2× model on half memory could still achieve 50-70% of the 
throughput of the full-memory scenario (just hypothetical). The user must balance memory 
vs speed, but Trickums gives that flexibility. 

Deployment wise, Trickums would be installed as part of the ForgeBorn client on each 
node. Likely it requires a kernel driver or at least admin privileges to lock memory and tune 
system for minimal paging interference (one wouldn’t want the OS to swap pinned memory 
out to disk – pinned usually means it won’t, but it consumes RAM so OS should have 
enough headroom). It could also come with a monitoring tool to observe how much it’s 
swapping (so advanced users can realize if they’re thrashing too much, maybe they choose 
a smaller model or upgrade hardware). 

Future Enhancements (Compression, Sparsity, AI-driven Policies) 
Trickums as described is already powerful, but there are exciting avenues to enhance it 
further: 

• Memory Compression: Compressing data can effectively increase the capacity of 
each tier and reduce transfer times, at the cost of compute overhead for 
compress/decompress. There are a few angles: 

• Lossless compression (e.g., LZ4 or ZSTD) on pages before writing to disk or sending 
over network. If model weights contain redundant patterns or zeros, this could 
reduce size. Even a 2:1 compression means half the disk IO and network traffic, 
which is significant. The overhead of compressing a 4MB page might be a few 
microseconds (if using fast algorithms and possibly hardware accelerators). 
NVIDIA’s Nsight might identify patterns to exploit as well. 

• Lossy compression or quantization specifically for model weights: e.g., if using 16-
bit floats, maybe compress to 8-bit on disk and then convert back to float16 on 
load. Or more exotic: store differences between weights (which might be smaller 
entropy). However, lossy could affect model accuracy, so likely not unless done 
carefully (some frameworks do allow running models in lower precision to save 
memory though). 

• Compressed Page Cache: Another idea is, similar to some OSes (like Windows 
compresses memory in RAM before swapping to disk), Trickums could compress 
pages when moving from VRAM to RAM if the overhead is acceptable. GPUs 
themselves have compression tech (like delta color compression in graphics) but 
for general memory not so much. Perhaps some pages like activation tensors could 
compress well (sparsity or low entropy after ReLUs). This is speculative but worth 
researching. 

• Exploiting Sparsity: Many deep learning models have sparse patterns: e.g., large 
embedding matrices where not all vectors are used for a given batch, or activation 
maps with zeros. Trickums could integrate a sparse paging mechanism: rather than 



moving full dense pages, it only moves the non-zero elements or chunks actually 
needed. For example, if a model has a giant embedding table and an inference only 
touches 5% of it, Trickums doesn’t need to swap in the whole thing, just the parts 
being accessed. This requires understanding of data structures (maybe via hooks in 
the framework – e.g., know which indices will be looked up and only fetch those). 
It’s more of a model-specific optimization, but one that could drastically cut 
memory usage for some cases. Another aspect is storing sparse pages efficiently on 
disk (only store non-zero and an index map). If a model is pruned and 30% of 
weights are zero, maybe that compresses anyway, or we could avoid moving those 
zeros at all by marking them and skipping. 

• AI-Driven Prefetch/Eviction: Instead of fixed heuristics like LRU, an AI model could 
be trained (offline or online) to predict which pages will be needed and which can be 
evicted. The research we referenced earlier proposed using RNN or Transformer 
models on memory access traces[14][29]. Trickums could incorporate a lightweight 
predictor that classifies pages or sequences of accesses. For instance, observing 
the last few layer accesses or last few batches’ pattern, it might predict “after using 
page 5, 7, 3, we likely need 6 next” – so prefetch page 6. Or in eviction, it might 
predict a page that hasn’t been used in a while but will be used again soon (so don’t 
evict it, evict another that truly won’t be used). Over time, such a system could 
adapt to different models: e.g., CNNs have sequential layer access (easy to 
predict), whereas something like a Transformer might revisit certain weights (maybe 
in attention blocks sharing keys/values) – a learned predictor might catch those 
nuances. The cost is complexity and overhead of running the predictor; but maybe a 
small neural net on the CPU could run asynchronously. If ForgeBorn nodes have 
some idle CPU cores, dedicating some to smarter memory management could pay 
off in higher effective throughput. 

• Hardware Integration: In the future, Trickums concepts might be integrated into 
GPU hardware/drivers. For now, it’s a software overlay. But one could imagine a 
specialized NVMe SSD with GPU-side compression, or NIC that knows about 
Trickums pages and caches them, etc. If ForgeBorn grows, maybe even a custom 
“ForgeBorn co-processor” could assist (this goes beyond our scope, but fun to 
imagine). 

• Better Remote Coordination: Perhaps dynamic load balancing where if one node 
is constantly pulling from another’s memory, maybe they should just transfer some 
of the compute or permanently migrate that part of model to the first node’s disk 
and stop fetching repeatedly from remote. Hellhound likely can handle that: after a 
period, it might say “it’s cheaper to just copy shard Z over to my disk so I use that 
instead of bothering node B each time.” Trickums would then repoint to local 
storage. This blur between memory and placement is interesting – memory 
virtualization could lead to discovering that some models should be re-sharded for 
efficiency. 

https://arxiv.org/pdf/2204.02974#:%7E:text=the%20RNN%20model%20to%20the,knowledge%20from%20collected%20memory%20traces
https://arxiv.org/pdf/2204.02974#:%7E:text=etc,the%20prediction%20results%20with%20the


• User Controls and Telemetry: Exposing more controls: a user might set a policy 
like “use at most X GB of my disk for swap” or “prefer to use remote memory if 
available to save my SSD’s lifespan” (SSDs wear out with too many writes – 
something Trickums should consider by maybe using mostly read from disk and 
minimal write, or using RAM as write-back cache to reduce SSD writes). Telemetry 
could show how much data is being moved, average latency of page faults, etc., to 
give insight and allow tuning. In a decentralized economy, this might even feed into 
pricing: e.g., if you borrow memory from peers a lot, you pay tokens; if you use your 
disk instead, no cost but you accept slower speed. 

Finally, framing it back in the narrative: these enhancements are like finding new alloys and 
enchantments to further strengthen the ForgeBorn arsenal – compressing memory like 
folding steel, skipping zeros like an arrow finding the gaps, and even employing predictive 
magic to foresee needs. With Trickums continuously evolving, the “VRAM illusion” can only 
become more convincing, inching closer to making the hardware limits disappear entirely 
from the user’s perspective. 

Conclusion 
Trickums, the VRAM illusion layer of ForgeBorn, stands as a compelling marriage of 
metaphor and engineering. It extends the notion of memory beyond physical constraints: 
through a hierarchy of forges and phantoms – from the red-hot GPU VRAM to the cool 
expanse of system RAM, down to the deep vaults of disk, and across the ether to allied 
nodes’ memory. The system’s design draws on proven concepts (paging, caching, unified 
memory) and innovates by orchestrating them in a distributed, AI-informed context. By 
intercepting and managing memory at every turn, Trickums deceives the harsh reality of 
limited VRAM, presenting instead a boundless vista of memory where large models roam 
freely. 

In practice, Trickums enables a form of democratized AI compute: one where a hobbyist’s 
PC with a mid-range GPU can contribute to or benefit from the same AI models that 
traditionally demanded enterprise hardware. It levels the field by leveraging what’s 
abundant (disk, network, system RAM) to make up for what’s scarce (GPU RAM). The cost – 
some added latency or complexity – is tempered by careful planning (Hellhound’s 
foresight, asynchronous transfers) and thus kept in check. 

As we look ahead, Trickums could very well be the cornerstone that allows the ForgeBorn 
network to scale elastically. It provides the backbone for economically inclusive AI, 
where nodes of varying capability can join forces, share resources, and ensure that 
knowledge (models) flows to wherever there’s compute available, without hitting a 
memory wall. This companion whitepaper to the ForgeBorn Genesis Scroll has delved into 
the technical depths of Trickums, but through the lens of narrative – we’ve seen Trickums 
as the illusionist, the blacksmith’s apprentice, the sorcerer of memory. In doing so, we 
hope the design is not only clear in engineering terms, but also vivid in concept. 



Ultimately, Trickums is about empowerment: empowering hardware to do more than its 
specs, empowering individuals to participate in AI at scale, and empowering the ForgeBorn 
collective to wield “the fire of the forge” – the massive power of AI models – without being 
extinguished by practical limits. Through tempered design and clever deception, Trickums 
keeps the forge flames alight, ensuring that no GPU, however small, is left behind in the 
quest to forge intelligence from data. 

Sources: The design of Trickums builds upon prior art and concepts such as NVIDIA’s 
Unified Memory and GPUDirect technologies[4][6], remote GPU virtualization frameworks 
like rCUDA[9], and research into GPU memory oversubscription[8][13]. Pinned host 
memory provides a CPU-GPU bridge albeit with lower bandwidth[2], and Resizable BAR 
(Smart Access Memory) shows the benefits of broadening CPU-GPU addressability[23]. By 
integrating these ideas and extending them with a tiered approach and distributed 
awareness, Trickums creates a unique solution to push beyond the traditional VRAM 
limits. The cooperation with ForgeBorn’s Hellhound for prefetching model shards is a novel 
layer, aligning with suggestions that smarter (even ML-driven) policies can significantly 
reduce thrashing and improve utilization[17][18]. In sum, Trickums is an embodiment of 
multiple state-of-the-art strategies unified under one “roof” to serve the ForgeBorn vision. 
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